Package org.bouncycastle.pqc.math.linearalgebra

Examples of org.bouncycastle.pqc.math.linearalgebra.GF2Matrix


    public byte[] messageEncrypt(byte[] input)
    {
        GF2Vector m = computeMessageRepresentative(input);
        GF2Vector z = new GF2Vector(n, t, sr);

        GF2Matrix g = ((McEliecePublicKeyParameters)key).getG();
        Vector mG = g.leftMultiply(m);
        GF2Vector mGZ = (GF2Vector)mG.add(z);

        return mGZ.getEncoded();
    }
View Full Code Here


    {
        GF2Vector vec = GF2Vector.OS2VP(n, input);
        McEliecePrivateKeyParameters privKey = (McEliecePrivateKeyParameters)key;
        GF2mField field = privKey.getField();
        PolynomialGF2mSmallM gp = privKey.getGoppaPoly();
        GF2Matrix sInv = privKey.getSInv();
        Permutation p1 = privKey.getP1();
        Permutation p2 = privKey.getP2();
        GF2Matrix h = privKey.getH();
        PolynomialGF2mSmallM[] qInv = privKey.getQInv();

        // compute permutation P = P1 * P2
        Permutation p = p1.rightMultiply(p2);

        // compute P^-1
        Permutation pInv = p.computeInverse();

        // compute c P^-1
        GF2Vector cPInv = (GF2Vector)vec.multiply(pInv);

        // compute syndrome of c P^-1
        GF2Vector syndrome = (GF2Vector)h.rightMultiply(cPInv);

        // decode syndrome
        GF2Vector z = GoppaCode.syndromeDecode(syndrome, field, gp, qInv);
        GF2Vector mSG = (GF2Vector)cPInv.add(z);

View Full Code Here

    public static GF2Vector encryptionPrimitive(McElieceCCA2PublicKeyParameters pubKey,
                                                GF2Vector m, GF2Vector z)
    {

        GF2Matrix matrixG = pubKey.getMatrixG();
        Vector mG = matrixG.leftMultiplyLeftCompactForm(m);
        return (GF2Vector)mG.add(z);
    }
View Full Code Here

        // obtain values from private key
        int k = privKey.getK();
        Permutation p = privKey.getP();
        GF2mField field = privKey.getField();
        PolynomialGF2mSmallM gp = privKey.getGoppaPoly();
        GF2Matrix h = privKey.getH();
        PolynomialGF2mSmallM[] q = privKey.getQInv();

        // compute inverse permutation P^-1
        Permutation pInv = p.computeInverse();

        // multiply c with permutation P^-1
        GF2Vector cPInv = (GF2Vector)c.multiply(pInv);

        // compute syndrome of cP^-1
        GF2Vector syndVec = (GF2Vector)h.rightMultiply(cPInv);

        // decode syndrome
        GF2Vector errors = GoppaCode.syndromeDecode(syndVec, field, gp, q);
        GF2Vector mG = (GF2Vector)cPInv.add(errors);
View Full Code Here

     */
    public static GF2Vector encryptionPrimitive(BCMcElieceCCA2PublicKey pubKey,
                                                GF2Vector m, GF2Vector z)
    {

        GF2Matrix matrixG = pubKey.getG();
        Vector mG = matrixG.leftMultiplyLeftCompactForm(m);
        return (GF2Vector)mG.add(z);
    }
View Full Code Here

        this.oid = oid;
        this.n = n;
        this.k = k;
        field = new GF2mField(encField);
        goppaPoly = new PolynomialGF2mSmallM(field, encGoppaPoly);
        sInv = new GF2Matrix(encSInv);
        p1 = new Permutation(encP1);
        p2 = new Permutation(encP2);
        h = new GF2Matrix(encH);
        qInv = new PolynomialGF2mSmallM[encQInv.length];
        for (int i = 0; i < encQInv.length; i++)
        {
            qInv[i] = new PolynomialGF2mSmallM(field, encQInv[i]);
        }
View Full Code Here

        // matrix used to compute square roots in (GF(2^m))^t
        PolynomialGF2mSmallM[] sqRootMatrix = ring.getSquareRootMatrix();

        // generate canonical check matrix
        GF2Matrix h = GoppaCode.createCanonicalCheckMatrix(field, gp);

        // compute short systematic form of check matrix
        MaMaPe mmp = GoppaCode.computeSystematicForm(h, random);
        GF2Matrix shortH = mmp.getSecondMatrix();
        Permutation p1 = mmp.getPermutation();

        // compute short systematic form of generator matrix
        GF2Matrix shortG = (GF2Matrix)shortH.computeTranspose();

        // extend to full systematic form
        GF2Matrix gPrime = shortG.extendLeftCompactForm();

        // obtain number of rows of G (= dimension of the code)
        int k = shortG.getNumRows();

        // generate random invertible (k x k)-matrix S and its inverse S^-1
        GF2Matrix[] matrixSandInverse = GF2Matrix
            .createRandomRegularMatrixAndItsInverse(k, random);

        // generate random permutation P2
        Permutation p2 = new Permutation(n, random);

        // compute public matrix G=S*G'*P2
        GF2Matrix g = (GF2Matrix)matrixSandInverse[0].rightMultiply(gPrime);
        g = (GF2Matrix)g.rightMultiply(p2);


        // generate keys
        McEliecePublicKeyParameters pubKey = new McEliecePublicKeyParameters(OID, n, t, g, mcElieceParams.getParameters());
        McEliecePrivateKeyParameters privKey = new McEliecePrivateKeyParameters(OID, n, k,
View Full Code Here

        // matrix for computing square roots in (GF(2^m))^t
        PolynomialGF2mSmallM[] qInv = ring.getSquareRootMatrix();

        // generate canonical check matrix
        GF2Matrix h = GoppaCode.createCanonicalCheckMatrix(field, gp);

        // compute short systematic form of check matrix
        MaMaPe mmp = GoppaCode.computeSystematicForm(h, random);
        GF2Matrix shortH = mmp.getSecondMatrix();
        Permutation p = mmp.getPermutation();

        // compute short systematic form of generator matrix
        GF2Matrix shortG = (GF2Matrix)shortH.computeTranspose();

        // obtain number of rows of G (= dimension of the code)
        int k = shortG.getNumRows();

        // generate keys
        McElieceCCA2PublicKeyParameters pubKey = new McElieceCCA2PublicKeyParameters(OID, n, t, shortG, mcElieceCCA2Params.getParameters());
        McElieceCCA2PrivateKeyParameters privKey = new McElieceCCA2PrivateKeyParameters(OID, n, k,
            field, gp, p, h, qInv, mcElieceCCA2Params.getParameters());
View Full Code Here

        return new Permutation(encP);
    }

    public GF2Matrix getH()
    {
        return new GF2Matrix(encH);
    }
View Full Code Here

        this.n = n;
        this.k = k;
        field = new GF2mField(encFieldPoly);
        goppaPoly = new PolynomialGF2mSmallM(field, encGoppaPoly);
        p = new Permutation(encP);
        h = new GF2Matrix(encH);
        qInv = new PolynomialGF2mSmallM[encQInv.length];
        for (int i = 0; i < encQInv.length; i++)
        {
            qInv[i] = new PolynomialGF2mSmallM(field, encQInv[i]);
        }
View Full Code Here

TOP

Related Classes of org.bouncycastle.pqc.math.linearalgebra.GF2Matrix

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.