Package org.apache.xerces.impl.dtd.models

Examples of org.apache.xerces.impl.dtd.models.CMStateSet


        //  sets for all the nodes. So we allocate an array of state sets,
        //  one for each leaf node (i.e. each DFA position.)
        //
        fFollowList = new CMStateSet[fLeafCount];
        for (int index = 0; index < fLeafCount; index++)
            fFollowList[index] = new CMStateSet(fLeafCount);
        calcFollowList(fHeadNode);
        //
        //  And finally the big push... Now we build the DFA using all the
        //  states and the tree we've built up. First we set up the various
        //  data structures we are going to use while we do this.
        //
        //  First of all we need an array of unique element names in our
        //  content model. For each transition table entry, we need a set of
        //  contiguous indices to represent the transitions for a particular
        //  input element. So we need to a zero based range of indexes that
        //  map to element types. This element map provides that mapping.
        //
        fElemMap = new Object[fLeafCount];
        fElemMapType = new int[fLeafCount];
        fElemMapId = new int[fLeafCount];
        fElemMapSize = 0;
        for (int outIndex = 0; outIndex < fLeafCount; outIndex++) {
            // optimization from Henry Zongaro:
            //fElemMap[outIndex] = new Object ();
            fElemMap[outIndex] = null;

            int inIndex = 0;
            final int id = fLeafList[outIndex].getParticleId();
            for (; inIndex < fElemMapSize; inIndex++) {
                if (id == fElemMapId[inIndex])
                    break;
            }

            // If it was not in the list, then add it, if not the EOC node
            if (inIndex == fElemMapSize) {
                fElemMap[fElemMapSize] = fLeafList[outIndex].getLeaf();
                fElemMapType[fElemMapSize] = fLeafListType[outIndex];
                fElemMapId[fElemMapSize] = id;
                fElemMapSize++;
            }
        }

        // the last entry in the element map must be the EOC element.
        // remove it from the map.
        if (DEBUG) {
            if (fElemMapId[fElemMapSize-1] != -1)
                System.err.println("interal error in DFA: last element is not EOC.");
        }
        fElemMapSize--;

        /***
         * Optimization(Jan, 2001); We sort fLeafList according to
         * elemIndex which is *uniquely* associated to each leaf.
         * We are *assuming* that each element appears in at least one leaf.
         **/

        int[] fLeafSorter = new int[fLeafCount + fElemMapSize];
        int fSortCount = 0;

        for (int elemIndex = 0; elemIndex < fElemMapSize; elemIndex++) {
            final int id = fElemMapId[elemIndex];
            for (int leafIndex = 0; leafIndex < fLeafCount; leafIndex++) {
                if (id == fLeafList[leafIndex].getParticleId())
                    fLeafSorter[fSortCount++] = leafIndex;
            }
            fLeafSorter[fSortCount++] = -1;
        }

        /* Optimization(Jan, 2001) */

        //
        //  Next lets create some arrays, some that hold transient
        //  information during the DFA build and some that are permament.
        //  These are kind of sticky since we cannot know how big they will
        //  get, but we don't want to use any Java collections because of
        //  performance.
        //
        //  Basically they will probably be about fLeafCount*2 on average,
        //  but can be as large as 2^(fLeafCount*2), worst case. So we start
        //  with fLeafCount*4 as a middle ground. This will be very unlikely
        //  to ever have to expand, though it if does, the overhead will be
        //  somewhat ugly.
        //
        int curArraySize = fLeafCount * 4;
        CMStateSet[] statesToDo = new CMStateSet[curArraySize];
        fFinalStateFlags = new boolean[curArraySize];
        fTransTable = new int[curArraySize][];

        //
        //  Ok we start with the initial set as the first pos set of the
        //  head node (which is the seq node that holds the content model
        //  and the EOC node.)
        //
        CMStateSet setT = fHeadNode.firstPos();

        //
        //  Init our two state flags. Basically the unmarked state counter
        //  is always chasing the current state counter. When it catches up,
        //  that means we made a pass through that did not add any new states
        //  to the lists, at which time we are done. We could have used a
        //  expanding array of flags which we used to mark off states as we
        //  complete them, but this is easier though less readable maybe.
        //
        int unmarkedState = 0;
        int curState = 0;

        //
        //  Init the first transition table entry, and put the initial state
        //  into the states to do list, then bump the current state.
        //
        fTransTable[curState] = makeDefStateList();
        statesToDo[curState] = setT;
        curState++;

        /* Optimization(Jan, 2001); This is faster for
         * a large content model such as, "(t001+|t002+|.... |t500+)".
         */

        java.util.Hashtable stateTable = new java.util.Hashtable();

        /* Optimization(Jan, 2001) */

        //
        //  Ok, almost done with the algorithm... We now enter the
        //  loop where we go until the states done counter catches up with
        //  the states to do counter.
        //
        while (unmarkedState < curState) {
            //
            //  Get the first unmarked state out of the list of states to do.
            //  And get the associated transition table entry.
            //
            setT = statesToDo[unmarkedState];
            int[] transEntry = fTransTable[unmarkedState];

            // Mark this one final if it contains the EOC state
            fFinalStateFlags[unmarkedState] = setT.getBit(fEOCPos);

            // Bump up the unmarked state count, marking this state done
            unmarkedState++;

            // Loop through each possible input symbol in the element map
            CMStateSet newSet = null;
            /* Optimization(Jan, 2001) */
            int sorterIndex = 0;
            /* Optimization(Jan, 2001) */
            for (int elemIndex = 0; elemIndex < fElemMapSize; elemIndex++) {
                //
                //  Build up a set of states which is the union of all of
                //  the follow sets of DFA positions that are in the current
                //  state. If we gave away the new set last time through then
                //  create a new one. Otherwise, zero out the existing one.
                //
                if (newSet == null)
                    newSet = new CMStateSet(fLeafCount);
                else
                    newSet.zeroBits();

                /* Optimization(Jan, 2001) */
                int leafIndex = fLeafSorter[sorterIndex++];

                while (leafIndex != -1) {
                    // If this leaf index (DFA position) is in the current set...
                    if (setT.getBit(leafIndex)) {
                        //
                        //  If this leaf is the current input symbol, then we
                        //  want to add its follow list to the set of states to
                        //  transition to from the current state.
                        //
                        newSet.union(fFollowList[leafIndex]);
                    }

                   leafIndex = fLeafSorter[sorterIndex++];
                }
                /* Optimization(Jan, 2001) */

                //
                //  If this new set is not empty, then see if its in the list
                //  of states to do. If not, then add it.
                //
                if (!newSet.isEmpty()) {
                    //
                    //  Search the 'states to do' list to see if this new
                    //  state set is already in there.
                    //

View Full Code Here


            //
            //  Now handle our level. We use our left child's last pos
            //  set and our right child's first pos set, so go ahead and
            //  get them ahead of time.
            //
            final CMStateSet last  = ((XSCMBinOp)nodeCur).getLeft().lastPos();
            final CMStateSet first = ((XSCMBinOp)nodeCur).getRight().firstPos();

            //
            //  Now, for every position which is in our left child's last set
            //  add all of the states in our right child's first set to the
            //  follow set for that position.
            //
            for (int index = 0; index < fLeafCount; index++) {
                if (last.getBit(index))
                    fFollowList[index].union(first);
            }
        }
         else if (nodeCur.type() == XSParticleDecl.PARTICLE_ZERO_OR_MORE
        || nodeCur.type() == XSParticleDecl.PARTICLE_ONE_OR_MORE) {
            // Recurse first
            calcFollowList(((XSCMUniOp)nodeCur).getChild());

            //
            //  Now handle our level. We use our own first and last position
            //  sets, so get them up front.
            //
            final CMStateSet first = nodeCur.firstPos();
            final CMStateSet last  = nodeCur.lastPos();

            //
            //  For every position which is in our last position set, add all
            //  of our first position states to the follow set for that
            //  position.
            //
            for (int index = 0; index < fLeafCount; index++) {
                if (last.getBit(index))
                    fFollowList[index].union(first);
            }
        }

        else if (nodeCur.type() == XSParticleDecl.PARTICLE_ZERO_OR_ONE) {
View Full Code Here

        //  sets for all the nodes. So we allocate an array of state sets,
        //  one for each leaf node (i.e. each DFA position.)
        //
        fFollowList = new CMStateSet[fLeafCount];
        for (int index = 0; index < fLeafCount; index++)
            fFollowList[index] = new CMStateSet(fLeafCount);
        calcFollowList(fHeadNode);
        //
        //  And finally the big push... Now we build the DFA using all the
        //  states and the tree we've built up. First we set up the various
        //  data structures we are going to use while we do this.
        //
        //  First of all we need an array of unique element names in our
        //  content model. For each transition table entry, we need a set of
        //  contiguous indices to represent the transitions for a particular
        //  input element. So we need to a zero based range of indexes that
        //  map to element types. This element map provides that mapping.
        //
        fElemMap = new Object[fLeafCount];
        fElemMapType = new int[fLeafCount];
        fElemMapId = new int[fLeafCount];
        fElemMapSize = 0;
        for (int outIndex = 0; outIndex < fLeafCount; outIndex++) {
            // optimization from Henry Zongaro:
            //fElemMap[outIndex] = new Object ();
            fElemMap[outIndex] = null;

            int inIndex = 0;
            final int id = fLeafList[outIndex].getParticleId();
            for (; inIndex < fElemMapSize; inIndex++) {
                if (id == fElemMapId[inIndex])
                    break;
            }

            // If it was not in the list, then add it, if not the EOC node
            if (inIndex == fElemMapSize) {
                fElemMap[fElemMapSize] = fLeafList[outIndex].getLeaf();
                fElemMapType[fElemMapSize] = fLeafListType[outIndex];
                fElemMapId[fElemMapSize] = id;
                fElemMapSize++;
            }
        }

        // the last entry in the element map must be the EOC element.
        // remove it from the map.
        if (DEBUG) {
            if (fElemMapId[fElemMapSize-1] != -1)
                System.err.println("interal error in DFA: last element is not EOC.");
        }
        fElemMapSize--;

        /***
         * Optimization(Jan, 2001); We sort fLeafList according to
         * elemIndex which is *uniquely* associated to each leaf.
         * We are *assuming* that each element appears in at least one leaf.
         **/

        int[] fLeafSorter = new int[fLeafCount + fElemMapSize];
        int fSortCount = 0;

        for (int elemIndex = 0; elemIndex < fElemMapSize; elemIndex++) {
            final int id = fElemMapId[elemIndex];
            for (int leafIndex = 0; leafIndex < fLeafCount; leafIndex++) {
                if (id == fLeafList[leafIndex].getParticleId())
                    fLeafSorter[fSortCount++] = leafIndex;
            }
            fLeafSorter[fSortCount++] = -1;
        }

        /* Optimization(Jan, 2001) */

        //
        //  Next lets create some arrays, some that hold transient
        //  information during the DFA build and some that are permament.
        //  These are kind of sticky since we cannot know how big they will
        //  get, but we don't want to use any Java collections because of
        //  performance.
        //
        //  Basically they will probably be about fLeafCount*2 on average,
        //  but can be as large as 2^(fLeafCount*2), worst case. So we start
        //  with fLeafCount*4 as a middle ground. This will be very unlikely
        //  to ever have to expand, though it if does, the overhead will be
        //  somewhat ugly.
        //
        int curArraySize = fLeafCount * 4;
        CMStateSet[] statesToDo = new CMStateSet[curArraySize];
        fFinalStateFlags = new boolean[curArraySize];
        fTransTable = new int[curArraySize][];

        //
        //  Ok we start with the initial set as the first pos set of the
        //  head node (which is the seq node that holds the content model
        //  and the EOC node.)
        //
        CMStateSet setT = fHeadNode.firstPos();

        //
        //  Init our two state flags. Basically the unmarked state counter
        //  is always chasing the current state counter. When it catches up,
        //  that means we made a pass through that did not add any new states
        //  to the lists, at which time we are done. We could have used a
        //  expanding array of flags which we used to mark off states as we
        //  complete them, but this is easier though less readable maybe.
        //
        int unmarkedState = 0;
        int curState = 0;

        //
        //  Init the first transition table entry, and put the initial state
        //  into the states to do list, then bump the current state.
        //
        fTransTable[curState] = makeDefStateList();
        statesToDo[curState] = setT;
        curState++;

        /* Optimization(Jan, 2001); This is faster for
         * a large content model such as, "(t001+|t002+|.... |t500+)".
         */

        java.util.Hashtable stateTable = new java.util.Hashtable();

        /* Optimization(Jan, 2001) */

        //
        //  Ok, almost done with the algorithm... We now enter the
        //  loop where we go until the states done counter catches up with
        //  the states to do counter.
        //
        while (unmarkedState < curState) {
            //
            //  Get the first unmarked state out of the list of states to do.
            //  And get the associated transition table entry.
            //
            setT = statesToDo[unmarkedState];
            int[] transEntry = fTransTable[unmarkedState];

            // Mark this one final if it contains the EOC state
            fFinalStateFlags[unmarkedState] = setT.getBit(fEOCPos);

            // Bump up the unmarked state count, marking this state done
            unmarkedState++;

            // Loop through each possible input symbol in the element map
            CMStateSet newSet = null;
            /* Optimization(Jan, 2001) */
            int sorterIndex = 0;
            /* Optimization(Jan, 2001) */
            for (int elemIndex = 0; elemIndex < fElemMapSize; elemIndex++) {
                //
                //  Build up a set of states which is the union of all of
                //  the follow sets of DFA positions that are in the current
                //  state. If we gave away the new set last time through then
                //  create a new one. Otherwise, zero out the existing one.
                //
                if (newSet == null)
                    newSet = new CMStateSet(fLeafCount);
                else
                    newSet.zeroBits();

                /* Optimization(Jan, 2001) */
                int leafIndex = fLeafSorter[sorterIndex++];

                while (leafIndex != -1) {
                    // If this leaf index (DFA position) is in the current set...
                    if (setT.getBit(leafIndex)) {
                        //
                        //  If this leaf is the current input symbol, then we
                        //  want to add its follow list to the set of states to
                        //  transition to from the current state.
                        //
                        newSet.union(fFollowList[leafIndex]);
                    }

                   leafIndex = fLeafSorter[sorterIndex++];
                }
                /* Optimization(Jan, 2001) */

                //
                //  If this new set is not empty, then see if its in the list
                //  of states to do. If not, then add it.
                //
                if (!newSet.isEmpty()) {
                    //
                    //  Search the 'states to do' list to see if this new
                    //  state set is already in there.
                    //

View Full Code Here

            //
            //  Now handle our level. We use our left child's last pos
            //  set and our right child's first pos set, so go ahead and
            //  get them ahead of time.
            //
            final CMStateSet last  = ((XSCMBinOp)nodeCur).getLeft().lastPos();
            final CMStateSet first = ((XSCMBinOp)nodeCur).getRight().firstPos();

            //
            //  Now, for every position which is in our left child's last set
            //  add all of the states in our right child's first set to the
            //  follow set for that position.
            //
            for (int index = 0; index < fLeafCount; index++) {
                if (last.getBit(index))
                    fFollowList[index].union(first);
            }
        }
         else if (nodeCur.type() == XSParticleDecl.PARTICLE_ZERO_OR_MORE
        || nodeCur.type() == XSParticleDecl.PARTICLE_ONE_OR_MORE) {
            // Recurse first
            calcFollowList(((XSCMUniOp)nodeCur).getChild());

            //
            //  Now handle our level. We use our own first and last position
            //  sets, so get them up front.
            //
            final CMStateSet first = nodeCur.firstPos();
            final CMStateSet last  = nodeCur.lastPos();

            //
            //  For every position which is in our last position set, add all
            //  of our first position states to the follow set for that
            //  position.
            //
            for (int index = 0; index < fLeafCount; index++) {
                if (last.getBit(index))
                    fFollowList[index].union(first);
            }
        }

        else if (nodeCur.type() == XSParticleDecl.PARTICLE_ZERO_OR_ONE) {
View Full Code Here

        //  sets for all the nodes. So we allocate an array of state sets,
        //  one for each leaf node (i.e. each DFA position.)
        //
        fFollowList = new CMStateSet[fLeafCount];
        for (int index = 0; index < fLeafCount; index++)
            fFollowList[index] = new CMStateSet(fLeafCount);
        calcFollowList(fHeadNode);
        //
        //  And finally the big push... Now we build the DFA using all the
        //  states and the tree we've built up. First we set up the various
        //  data structures we are going to use while we do this.
        //
        //  First of all we need an array of unique element names in our
        //  content model. For each transition table entry, we need a set of
        //  contiguous indices to represent the transitions for a particular
        //  input element. So we need to a zero based range of indexes that
        //  map to element types. This element map provides that mapping.
        //
        fElemMap = new Object[fLeafCount];
        fElemMapType = new int[fLeafCount];
        fElemMapId = new int[fLeafCount];
        fElemMapSize = 0;
        Occurence [] elemOccurenceMap = null;
        for (int outIndex = 0; outIndex < fLeafCount; outIndex++) {
            // optimization from Henry Zongaro:
            //fElemMap[outIndex] = new Object ();
            fElemMap[outIndex] = null;

            int inIndex = 0;
            final int id = fLeafList[outIndex].getParticleId();
            for (; inIndex < fElemMapSize; inIndex++) {
                if (id == fElemMapId[inIndex])
                    break;
            }

            // If it was not in the list, then add it, if not the EOC node
            if (inIndex == fElemMapSize) {
                XSCMLeaf leaf = fLeafList[outIndex];
                fElemMap[fElemMapSize] = leaf.getLeaf();
                if (leaf instanceof XSCMRepeatingLeaf) {
                    if (elemOccurenceMap == null) {
                        elemOccurenceMap = new Occurence[fLeafCount];
                    }
                    elemOccurenceMap[fElemMapSize] = new Occurence((XSCMRepeatingLeaf) leaf, fElemMapSize);
                }
                fElemMapType[fElemMapSize] = fLeafListType[outIndex];
                fElemMapId[fElemMapSize] = id;
                fElemMapSize++;
            }
        }

        // the last entry in the element map must be the EOC element.
        // remove it from the map.
        if (DEBUG) {
            if (fElemMapId[fElemMapSize-1] != -1)
                System.err.println("interal error in DFA: last element is not EOC.");
        }
        fElemMapSize--;

        /***
         * Optimization(Jan, 2001); We sort fLeafList according to
         * elemIndex which is *uniquely* associated to each leaf.
         * We are *assuming* that each element appears in at least one leaf.
         **/

        int[] fLeafSorter = new int[fLeafCount + fElemMapSize];
        int fSortCount = 0;

        for (int elemIndex = 0; elemIndex < fElemMapSize; elemIndex++) {
            final int id = fElemMapId[elemIndex];
            for (int leafIndex = 0; leafIndex < fLeafCount; leafIndex++) {
                if (id == fLeafList[leafIndex].getParticleId())
                    fLeafSorter[fSortCount++] = leafIndex;
            }
            fLeafSorter[fSortCount++] = -1;
        }

        /* Optimization(Jan, 2001) */

        //
        //  Next lets create some arrays, some that hold transient
        //  information during the DFA build and some that are permament.
        //  These are kind of sticky since we cannot know how big they will
        //  get, but we don't want to use any Java collections because of
        //  performance.
        //
        //  Basically they will probably be about fLeafCount*2 on average,
        //  but can be as large as 2^(fLeafCount*2), worst case. So we start
        //  with fLeafCount*4 as a middle ground. This will be very unlikely
        //  to ever have to expand, though it if does, the overhead will be
        //  somewhat ugly.
        //
        int curArraySize = fLeafCount * 4;
        CMStateSet[] statesToDo = new CMStateSet[curArraySize];
        fFinalStateFlags = new boolean[curArraySize];
        fTransTable = new int[curArraySize][];

        //
        //  Ok we start with the initial set as the first pos set of the
        //  head node (which is the seq node that holds the content model
        //  and the EOC node.)
        //
        CMStateSet setT = fHeadNode.firstPos();

        //
        //  Init our two state flags. Basically the unmarked state counter
        //  is always chasing the current state counter. When it catches up,
        //  that means we made a pass through that did not add any new states
        //  to the lists, at which time we are done. We could have used a
        //  expanding array of flags which we used to mark off states as we
        //  complete them, but this is easier though less readable maybe.
        //
        int unmarkedState = 0;
        int curState = 0;

        //
        //  Init the first transition table entry, and put the initial state
        //  into the states to do list, then bump the current state.
        //
        fTransTable[curState] = makeDefStateList();
        statesToDo[curState] = setT;
        curState++;

        /* Optimization(Jan, 2001); This is faster for
         * a large content model such as, "(t001+|t002+|.... |t500+)".
         */

        HashMap stateTable = new HashMap();

        /* Optimization(Jan, 2001) */

        //
        //  Ok, almost done with the algorithm... We now enter the
        //  loop where we go until the states done counter catches up with
        //  the states to do counter.
        //
        while (unmarkedState < curState) {
            //
            //  Get the first unmarked state out of the list of states to do.
            //  And get the associated transition table entry.
            //
            setT = statesToDo[unmarkedState];
            int[] transEntry = fTransTable[unmarkedState];

            // Mark this one final if it contains the EOC state
            fFinalStateFlags[unmarkedState] = setT.getBit(EOCPos);

            // Bump up the unmarked state count, marking this state done
            unmarkedState++;

            // Loop through each possible input symbol in the element map
            CMStateSet newSet = null;
            /* Optimization(Jan, 2001) */
            int sorterIndex = 0;
            /* Optimization(Jan, 2001) */
            for (int elemIndex = 0; elemIndex < fElemMapSize; elemIndex++) {
                //
                //  Build up a set of states which is the union of all of
                //  the follow sets of DFA positions that are in the current
                //  state. If we gave away the new set last time through then
                //  create a new one. Otherwise, zero out the existing one.
                //
                if (newSet == null)
                    newSet = new CMStateSet(fLeafCount);
                else
                    newSet.zeroBits();

                /* Optimization(Jan, 2001) */
                int leafIndex = fLeafSorter[sorterIndex++];

                while (leafIndex != -1) {
                    // If this leaf index (DFA position) is in the current set...
                    if (setT.getBit(leafIndex)) {
                        //
                        //  If this leaf is the current input symbol, then we
                        //  want to add its follow list to the set of states to
                        //  transition to from the current state.
                        //
                        newSet.union(fFollowList[leafIndex]);
                    }

                   leafIndex = fLeafSorter[sorterIndex++];
                }
                /* Optimization(Jan, 2001) */

                //
                //  If this new set is not empty, then see if its in the list
                //  of states to do. If not, then add it.
                //
                if (!newSet.isEmpty()) {
                    //
                    //  Search the 'states to do' list to see if this new
                    //  state set is already in there.
                    //

View Full Code Here

            //
            //  Now handle our level. We use our left child's last pos
            //  set and our right child's first pos set, so go ahead and
            //  get them ahead of time.
            //
            final CMStateSet last  = ((XSCMBinOp)nodeCur).getLeft().lastPos();
            final CMStateSet first = ((XSCMBinOp)nodeCur).getRight().firstPos();

            //
            //  Now, for every position which is in our left child's last set
            //  add all of the states in our right child's first set to the
            //  follow set for that position.
            //
            for (int index = 0; index < fLeafCount; index++) {
                if (last.getBit(index))
                    fFollowList[index].union(first);
            }
        }
         else if (nodeCur.type() == XSParticleDecl.PARTICLE_ZERO_OR_MORE
        || nodeCur.type() == XSParticleDecl.PARTICLE_ONE_OR_MORE) {
            // Recurse first
            calcFollowList(((XSCMUniOp)nodeCur).getChild());

            //
            //  Now handle our level. We use our own first and last position
            //  sets, so get them up front.
            //
            final CMStateSet first = nodeCur.firstPos();
            final CMStateSet last  = nodeCur.lastPos();

            //
            //  For every position which is in our last position set, add all
            //  of our first position states to the follow set for that
            //  position.
            //
            for (int index = 0; index < fLeafCount; index++) {
                if (last.getBit(index))
                    fFollowList[index].union(first);
            }
        }

        else if (nodeCur.type() == XSParticleDecl.PARTICLE_ZERO_OR_ONE) {
View Full Code Here

        //  sets for all the nodes. So we allocate an array of state sets,
        //  one for each leaf node (i.e. each DFA position.)
        //
        fFollowList = new CMStateSet[fLeafCount];
        for (int index = 0; index < fLeafCount; index++)
            fFollowList[index] = new CMStateSet(fLeafCount);
        calcFollowList(fHeadNode);
        //
        //  And finally the big push... Now we build the DFA using all the
        //  states and the tree we've built up. First we set up the various
        //  data structures we are going to use while we do this.
        //
        //  First of all we need an array of unique element names in our
        //  content model. For each transition table entry, we need a set of
        //  contiguous indices to represent the transitions for a particular
        //  input element. So we need to a zero based range of indexes that
        //  map to element types. This element map provides that mapping.
        //
        Object[] fElemMap = new Object[fLeafCount];
        int[] fElemMapType = new int[fLeafCount];
        int[] fElemMapId = new int[fLeafCount];
        int fElemMapSize = 0;
        Occurence [] elemOccurenceMap = null;
        int numElem = 0;
        for (int outIndex = 0; outIndex < fLeafCount; outIndex++) {
            // optimization from Henry Zongaro:
            //fElemMap[outIndex] = new Object ();
            fElemMap[outIndex] = null;

            int inIndex = 0;
            final int id = fLeafList[outIndex].getParticleId();
            for (; inIndex < fElemMapSize; inIndex++) {
                if (id == fElemMapId[inIndex])
                    break;
            }

            // If it was not in the list, then add it, if not the EOC node
            if (inIndex == fElemMapSize) {
                XSCMLeaf leaf = fLeafList[outIndex];
                fElemMap[fElemMapSize] = leaf.getLeaf();
                if (leaf instanceof XSCMRepeatingLeaf) {
                    if (elemOccurenceMap == null) {
                        elemOccurenceMap = new Occurence[fLeafCount];
                    }
                    elemOccurenceMap[fElemMapSize] = new Occurence((XSCMRepeatingLeaf) leaf, fElemMapSize);
                }
                fElemMapType[fElemMapSize] = fLeafListType[outIndex];
                fElemMapId[fElemMapSize] = id;
                if (fElemMapType[fElemMapSize] == XSParticleDecl.PARTICLE_ELEMENT) {
                    numElem++;
                }
                fElemMapSize++;
            }
        }

        // the last entry in the element map must be the EOC element.
        // remove it from the map.
        if (DEBUG) {
            if (fElemMapId[fElemMapSize-1] != -1)
                System.err.println("interal error in DFA: last element is not EOC.");
        }
        fElemMapSize--;
        numElem--;

        fNumTotal = fElemMapSize;
        if (fOpenContent != null) {
            fNumTotal++;
        }
       
        // Sort the element map so that elements appear before wildcards?
        // this will simplify oneTransition(), because of weakened wc.
        for (int ep=0, wp=fElemMapSize-1;;) {
            while (ep <= wp && fElemMapType[ep] == XSParticleDecl.PARTICLE_ELEMENT) {
                ep++;
            }
            while (wp >= ep && fElemMapType[wp] == XSParticleDecl.PARTICLE_WILDCARD) {
                wp--;
            }
            if (ep < wp) {
                Object t1 = fElemMap[ep];
                fElemMap[ep] = fElemMap[wp];
                fElemMap[wp] = t1;
                int t2 = fElemMapId[ep];
                fElemMapId[ep] = fElemMapId[wp];
                fElemMapId[wp] = t2;
                if (elemOccurenceMap != null) {
                    Occurence t3 = elemOccurenceMap[ep];
                    elemOccurenceMap[ep] = elemOccurenceMap[wp];
                    elemOccurenceMap[wp] = t3;
                    if (elemOccurenceMap[ep] != null) {
                        elemOccurenceMap[ep].elemIndex = ep;
                    }
                    if (elemOccurenceMap[wp] != null) {
                        elemOccurenceMap[wp].elemIndex = wp;
                    }
                }
                ep++;
                wp--;
            }
            else {
                break;
            }
        }
       
        /***
         * Optimization(Jan, 2001); We sort fLeafList according to
         * elemIndex which is *uniquely* associated to each leaf.
         * We are *assuming* that each element appears in at least one leaf.
         **/

        int[] fLeafSorter = new int[fLeafCount + fElemMapSize];
        int fSortCount = 0;

        for (int elemIndex = 0; elemIndex < fElemMapSize; elemIndex++) {
            final int id = fElemMapId[elemIndex];
            for (int leafIndex = 0; leafIndex < fLeafCount; leafIndex++) {
                if (id == fLeafList[leafIndex].getParticleId())
                    fLeafSorter[fSortCount++] = leafIndex;
            }
            fLeafSorter[fSortCount++] = -1;
        }

        /* Optimization(Jan, 2001) */

        //
        //  Next lets create some arrays, some that hold transient
        //  information during the DFA build and some that are permament.
        //  These are kind of sticky since we cannot know how big they will
        //  get, but we don't want to use any Java collections because of
        //  performance.
        //
        //  Basically they will probably be about fLeafCount*2 on average,
        //  but can be as large as 2^(fLeafCount*2), worst case. So we start
        //  with fLeafCount*4 as a middle ground. This will be very unlikely
        //  to ever have to expand, though it if does, the overhead will be
        //  somewhat ugly.
        //
        int curArraySize = fLeafCount * 4;
        CMStateSet[] statesToDo = new CMStateSet[curArraySize];
        fFinalStateFlags = new boolean[curArraySize];
        fTransTable = new int[curArraySize][];

        //
        //  Ok we start with the initial set as the first pos set of the
        //  head node (which is the seq node that holds the content model
        //  and the EOC node.)
        //
        CMStateSet setT = fHeadNode.firstPos();

        //
        //  Init our two state flags. Basically the unmarked state counter
        //  is always chasing the current state counter. When it catches up,
        //  that means we made a pass through that did not add any new states
        //  to the lists, at which time we are done. We could have used a
        //  expanding array of flags which we used to mark off states as we
        //  complete them, but this is easier though less readable maybe.
        //
        int unmarkedState = 0;
        int curState = 0;

        //
        //  Init the first transition table entry, and put the initial state
        //  into the states to do list, then bump the current state.
        //
        fTransTable[curState] = makeDefStateList();
        statesToDo[curState] = setT;
        curState++;

        /* Optimization(Jan, 2001); This is faster for
         * a large content model such as, "(t001+|t002+|.... |t500+)".
         */

        HashMap stateTable = new HashMap();

        /* Optimization(Jan, 2001) */

        //
        //  Ok, almost done with the algorithm... We now enter the
        //  loop where we go until the states done counter catches up with
        //  the states to do counter.
        //
        while (unmarkedState < curState) {
            //
            //  Get the first unmarked state out of the list of states to do.
            //  And get the associated transition table entry.
            //
            setT = statesToDo[unmarkedState];
            int[] transEntry = fTransTable[unmarkedState];

            // Mark this one final if it contains the EOC state
            fFinalStateFlags[unmarkedState] = setT.getBit(EOCPos);

            // Bump up the unmarked state count, marking this state done
            unmarkedState++;

            // Loop through each possible input symbol in the element map
            CMStateSet newSet = null;
            /* Optimization(Jan, 2001) */
            int sorterIndex = 0;
            /* Optimization(Jan, 2001) */
            for (int elemIndex = 0; elemIndex < fElemMapSize; elemIndex++) {
                //
                //  Build up a set of states which is the union of all of
                //  the follow sets of DFA positions that are in the current
                //  state. If we gave away the new set last time through then
                //  create a new one. Otherwise, zero out the existing one.
                //
                if (newSet == null)
                    newSet = new CMStateSet(fLeafCount);
                else
                    newSet.zeroBits();

                /* Optimization(Jan, 2001) */
                int leafIndex = fLeafSorter[sorterIndex++];

                while (leafIndex != -1) {
                    // If this leaf index (DFA position) is in the current set...
                    if (setT.getBit(leafIndex)) {
                        //
                        //  If this leaf is the current input symbol, then we
                        //  want to add its follow list to the set of states to
                        //  transition to from the current state.
                        //
                        newSet.union(fFollowList[leafIndex]);
                    }

                   leafIndex = fLeafSorter[sorterIndex++];
                }
                /* Optimization(Jan, 2001) */

                //
                //  If this new set is not empty, then see if its in the list
                //  of states to do. If not, then add it.
                //
                if (!newSet.isEmpty()) {
                    //
                    //  Search the 'states to do' list to see if this new
                    //  state set is already in there.
                    //

View Full Code Here

            //
            //  Now handle our level. We use our left child's last pos
            //  set and our right child's first pos set, so go ahead and
            //  get them ahead of time.
            //
            final CMStateSet last  = ((XSCMBinOp)nodeCur).getLeft().lastPos();
            final CMStateSet first = ((XSCMBinOp)nodeCur).getRight().firstPos();

            //
            //  Now, for every position which is in our left child's last set
            //  add all of the states in our right child's first set to the
            //  follow set for that position.
            //
            for (int index = 0; index < fLeafCount; index++) {
                if (last.getBit(index))
                    fFollowList[index].union(first);
            }
        }
         else if (nodeCur.type() == XSParticleDecl.PARTICLE_ZERO_OR_MORE
        || nodeCur.type() == XSParticleDecl.PARTICLE_ONE_OR_MORE) {
            // Recurse first
            calcFollowList(((XSCMUniOp)nodeCur).getChild());

            //
            //  Now handle our level. We use our own first and last position
            //  sets, so get them up front.
            //
            final CMStateSet first = nodeCur.firstPos();
            final CMStateSet last  = nodeCur.lastPos();

            //
            //  For every position which is in our last position set, add all
            //  of our first position states to the follow set for that
            //  position.
            //
            for (int index = 0; index < fLeafCount; index++) {
                if (last.getBit(index))
                    fFollowList[index].union(first);
            }
        }

        else if (nodeCur.type() == XSParticleDecl.PARTICLE_ZERO_OR_ONE) {
View Full Code Here

        //  sets for all the nodes. So we allocate an array of state sets,
        //  one for each leaf node (i.e. each DFA position.)
        //
        fFollowList = new CMStateSet[fLeafCount];
        for (int index = 0; index < fLeafCount; index++)
            fFollowList[index] = new CMStateSet(fLeafCount);
        calcFollowList(fHeadNode);
        //
        //  And finally the big push... Now we build the DFA using all the
        //  states and the tree we've built up. First we set up the various
        //  data structures we are going to use while we do this.
        //
        //  First of all we need an array of unique element names in our
        //  content model. For each transition table entry, we need a set of
        //  contiguous indices to represent the transitions for a particular
        //  input element. So we need to a zero based range of indexes that
        //  map to element types. This element map provides that mapping.
        //
        fElemMap = new Object[fLeafCount];
        fElemMapType = new int[fLeafCount];
        fElemMapId = new int[fLeafCount];
        fElemMapSize = 0;
        for (int outIndex = 0; outIndex < fLeafCount; outIndex++) {
            // optimization from Henry Zongaro:
            //fElemMap[outIndex] = new Object ();
            fElemMap[outIndex] = null;

            int inIndex = 0;
            final int id = fLeafList[outIndex].getParticleId();
            for (; inIndex < fElemMapSize; inIndex++) {
                if (id == fElemMapId[inIndex])
                    break;
            }

            // If it was not in the list, then add it, if not the EOC node
            if (inIndex == fElemMapSize) {
                fElemMap[fElemMapSize] = fLeafList[outIndex].getLeaf();
                fElemMapType[fElemMapSize] = fLeafListType[outIndex];
                fElemMapId[fElemMapSize] = id;
                fElemMapSize++;
            }
        }

        // the last entry in the element map must be the EOC element.
        // remove it from the map.
        if (DEBUG) {
            if (fElemMapId[fElemMapSize-1] != -1)
                System.err.println("interal error in DFA: last element is not EOC.");
        }
        fElemMapSize--;

        /***
         * Optimization(Jan, 2001); We sort fLeafList according to
         * elemIndex which is *uniquely* associated to each leaf.
         * We are *assuming* that each element appears in at least one leaf.
         **/

        int[] fLeafSorter = new int[fLeafCount + fElemMapSize];
        int fSortCount = 0;

        for (int elemIndex = 0; elemIndex < fElemMapSize; elemIndex++) {
            final int id = fElemMapId[elemIndex];
            for (int leafIndex = 0; leafIndex < fLeafCount; leafIndex++) {
                if (id == fLeafList[leafIndex].getParticleId())
                    fLeafSorter[fSortCount++] = leafIndex;
            }
            fLeafSorter[fSortCount++] = -1;
        }

        /* Optimization(Jan, 2001) */

        //
        //  Next lets create some arrays, some that hold transient
        //  information during the DFA build and some that are permament.
        //  These are kind of sticky since we cannot know how big they will
        //  get, but we don't want to use any Java collections because of
        //  performance.
        //
        //  Basically they will probably be about fLeafCount*2 on average,
        //  but can be as large as 2^(fLeafCount*2), worst case. So we start
        //  with fLeafCount*4 as a middle ground. This will be very unlikely
        //  to ever have to expand, though it if does, the overhead will be
        //  somewhat ugly.
        //
        int curArraySize = fLeafCount * 4;
        CMStateSet[] statesToDo = new CMStateSet[curArraySize];
        fFinalStateFlags = new boolean[curArraySize];
        fTransTable = new int[curArraySize][];

        //
        //  Ok we start with the initial set as the first pos set of the
        //  head node (which is the seq node that holds the content model
        //  and the EOC node.)
        //
        CMStateSet setT = fHeadNode.firstPos();

        //
        //  Init our two state flags. Basically the unmarked state counter
        //  is always chasing the current state counter. When it catches up,
        //  that means we made a pass through that did not add any new states
        //  to the lists, at which time we are done. We could have used a
        //  expanding array of flags which we used to mark off states as we
        //  complete them, but this is easier though less readable maybe.
        //
        int unmarkedState = 0;
        int curState = 0;

        //
        //  Init the first transition table entry, and put the initial state
        //  into the states to do list, then bump the current state.
        //
        fTransTable[curState] = makeDefStateList();
        statesToDo[curState] = setT;
        curState++;

        /* Optimization(Jan, 2001); This is faster for
         * a large content model such as, "(t001+|t002+|.... |t500+)".
         */

        HashMap stateTable = new HashMap();

        /* Optimization(Jan, 2001) */

        //
        //  Ok, almost done with the algorithm... We now enter the
        //  loop where we go until the states done counter catches up with
        //  the states to do counter.
        //
        while (unmarkedState < curState) {
            //
            //  Get the first unmarked state out of the list of states to do.
            //  And get the associated transition table entry.
            //
            setT = statesToDo[unmarkedState];
            int[] transEntry = fTransTable[unmarkedState];

            // Mark this one final if it contains the EOC state
            fFinalStateFlags[unmarkedState] = setT.getBit(EOCPos);

            // Bump up the unmarked state count, marking this state done
            unmarkedState++;

            // Loop through each possible input symbol in the element map
            CMStateSet newSet = null;
            /* Optimization(Jan, 2001) */
            int sorterIndex = 0;
            /* Optimization(Jan, 2001) */
            for (int elemIndex = 0; elemIndex < fElemMapSize; elemIndex++) {
                //
                //  Build up a set of states which is the union of all of
                //  the follow sets of DFA positions that are in the current
                //  state. If we gave away the new set last time through then
                //  create a new one. Otherwise, zero out the existing one.
                //
                if (newSet == null)
                    newSet = new CMStateSet(fLeafCount);
                else
                    newSet.zeroBits();

                /* Optimization(Jan, 2001) */
                int leafIndex = fLeafSorter[sorterIndex++];

                while (leafIndex != -1) {
                    // If this leaf index (DFA position) is in the current set...
                    if (setT.getBit(leafIndex)) {
                        //
                        //  If this leaf is the current input symbol, then we
                        //  want to add its follow list to the set of states to
                        //  transition to from the current state.
                        //
                        newSet.union(fFollowList[leafIndex]);
                    }

                   leafIndex = fLeafSorter[sorterIndex++];
                }
                /* Optimization(Jan, 2001) */

                //
                //  If this new set is not empty, then see if its in the list
                //  of states to do. If not, then add it.
                //
                if (!newSet.isEmpty()) {
                    //
                    //  Search the 'states to do' list to see if this new
                    //  state set is already in there.
                    //

View Full Code Here

            //
            //  Now handle our level. We use our left child's last pos
            //  set and our right child's first pos set, so go ahead and
            //  get them ahead of time.
            //
            final CMStateSet last  = ((XSCMBinOp)nodeCur).getLeft().lastPos();
            final CMStateSet first = ((XSCMBinOp)nodeCur).getRight().firstPos();

            //
            //  Now, for every position which is in our left child's last set
            //  add all of the states in our right child's first set to the
            //  follow set for that position.
            //
            for (int index = 0; index < fLeafCount; index++) {
                if (last.getBit(index))
                    fFollowList[index].union(first);
            }
        }
         else if (nodeCur.type() == XSParticleDecl.PARTICLE_ZERO_OR_MORE
        || nodeCur.type() == XSParticleDecl.PARTICLE_ONE_OR_MORE) {
            // Recurse first
            calcFollowList(((XSCMUniOp)nodeCur).getChild());

            //
            //  Now handle our level. We use our own first and last position
            //  sets, so get them up front.
            //
            final CMStateSet first = nodeCur.firstPos();
            final CMStateSet last  = nodeCur.lastPos();

            //
            //  For every position which is in our last position set, add all
            //  of our first position states to the follow set for that
            //  position.
            //
            for (int index = 0; index < fLeafCount; index++) {
                if (last.getBit(index))
                    fFollowList[index].union(first);
            }
        }

        else if (nodeCur.type() == XSParticleDecl.PARTICLE_ZERO_OR_ONE) {
View Full Code Here

TOP

Related Classes of org.apache.xerces.impl.dtd.models.CMStateSet

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.