Package org.apache.mahout.utils.clustering

Examples of org.apache.mahout.utils.clustering.ClusterDumper


   
    Path output = getTestTempDirPath("output");
    CanopyDriver.run(new Configuration(), getTestTempDirPath("testdata"),
        output, measure, 8, 4, true, 0.0, true);
    // run ClusterDumper
    ClusterDumper clusterDumper = new ClusterDumper(new Path(output,
        "clusters-0-final"), new Path(output, "clusteredPoints"));
    clusterDumper.printClusters(termDictionary);
  }
View Full Code Here


    // now run the KMeans job
    Path kmeansOutput = new Path(output, "kmeans");
  KMeansDriver.run(conf, getTestTempDirPath("testdata"), new Path(output,
        "clusters-0-final"), kmeansOutput, measure, 0.001, 10, true, 0.0, false);
    // run ClusterDumper
    ClusterDumper clusterDumper = new ClusterDumper(finalClusterPath(conf,
        output, 10), new Path(kmeansOutput, "clusteredPoints"));
    clusterDumper.printClusters(termDictionary);
  }
View Full Code Here

    Path kmeansOutput = new Path(output, "kmeans");
  FuzzyKMeansDriver.run(conf, getTestTempDirPath("testdata"), new Path(
        output, "clusters-0-final"), kmeansOutput, measure, 0.001, 10, 1.1f, true,
        true, 0, true);
    // run ClusterDumper
    ClusterDumper clusterDumper = new ClusterDumper(finalClusterPath(conf,
        output, 10), new Path(kmeansOutput, "clusteredPoints"));
    clusterDumper.printClusters(termDictionary);
  }
View Full Code Here

    Path output = getTestTempDirPath("output");
    Configuration conf = new Configuration();
    MeanShiftCanopyDriver.run(conf, getTestTempDirPath("testdata"), output,
        measure, kernelProfile, 0.5, 0.01, 0.05, 10, false, true, true);
    // run ClusterDumper
    ClusterDumper clusterDumper = new ClusterDumper(finalClusterPath(conf,
        output, 10), new Path(output, "clusteredPoints"));
    clusterDumper.printClusters(termDictionary);
  }
View Full Code Here

            .size());
    Configuration conf = new Configuration();
    DirichletDriver.run(conf, getTestTempDirPath("testdata"), output,
        description, 15, 10, 1.0, true, true, 0, true);
    // run ClusterDumper
    ClusterDumper clusterDumper = new ClusterDumper(finalClusterPath(conf,
        output, 10), new Path(output, "clusteredPoints"));
    clusterDumper.printClusters(termDictionary);
  }
View Full Code Here

            .size());
    Configuration conf = new Configuration();
    DirichletDriver.run(conf, getTestTempDirPath("testdata"), output,
        description, 15, 10, 1.0, true, true, 0, true);
    // run ClusterDumper
    ClusterDumper clusterDumper = new ClusterDumper(finalClusterPath(conf,
        output, 10), new Path(output, "clusteredPoints"));
    clusterDumper.printClusters(termDictionary);
  }
View Full Code Here

    // now run the KMeans job
    Path kmeansOutput = new Path(output, "kmeans");
  KMeansDriver.run(svdData, new Path(output, "clusters-0"), kmeansOutput, measure,
        0.001, 10, true, 0.0, true);
    // run ClusterDumper
    ClusterDumper clusterDumper = new ClusterDumper(finalClusterPath(conf,
        kmeansOutput, 10), new Path(kmeansOutput, "clusteredPoints"));
    clusterDumper.printClusters(termDictionary);
  }
View Full Code Here

    // now run the KMeans job
    Path kmeansOutput = new Path(output, "kmeans");
  KMeansDriver.run(sData.getRowPath(), new Path(output, "clusters-0"),
        kmeansOutput, measure, 0.001, 10, true, 0.0, true);
    // run ClusterDumper
    ClusterDumper clusterDumper = new ClusterDumper(finalClusterPath(conf,
        kmeansOutput, 10), new Path(kmeansOutput, "clusteredPoints"));
    clusterDumper.printClusters(termDictionary);
  }
View Full Code Here

    // now run the KMeans job
    Path kmeansOutput = new Path(output, "kmeans");
  KMeansDriver.run(sData.getRowPath(), new Path(output, "clusters-0"),
        kmeansOutput, measure, 0.001, 10, true, 0.0, true);
    // run ClusterDumper
    ClusterDumper clusterDumper = new ClusterDumper(finalClusterPath(conf,
        kmeansOutput, 10), new Path(kmeansOutput, "clusteredPoints"));
    clusterDumper.printClusters(termDictionary);
  }
View Full Code Here

        .run(new Configuration(), directoryContainingConvertedInput, canopyOutput, measure, t1, t2, false, 0.0, false);
    log.info("Running FuzzyKMeans");
    FuzzyKMeansDriver.run(directoryContainingConvertedInput, new Path(canopyOutput, "clusters-0-final"), output, measure,
        convergenceDelta, maxIterations, fuzziness, true, true, 0.0, false);
    // run ClusterDumper
    ClusterDumper clusterDumper = new ClusterDumper(new Path(output, "clusters-*-final"), new Path(output,
        "clusteredPoints"));
    clusterDumper.printClusters(null);
  }
View Full Code Here

TOP

Related Classes of org.apache.mahout.utils.clustering.ClusterDumper

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.