Package org.apache.mahout.utils.clustering

Examples of org.apache.mahout.utils.clustering.ClusterDumper$TermIndexWeight


   
    Path output = getTestTempDirPath("output");
    CanopyDriver.run(new Configuration(), getTestTempDirPath("testdata"),
        output, measure, 8, 4, true, 0.0, true);
    // run ClusterDumper
    ClusterDumper clusterDumper = new ClusterDumper(new Path(output,
        "clusters-0-final"), new Path(output, "clusteredPoints"));
    clusterDumper.printClusters(termDictionary);
  }
View Full Code Here


    // now run the KMeans job
    Path kmeansOutput = new Path(output, "kmeans");
  KMeansDriver.run(conf, getTestTempDirPath("testdata"), new Path(output,
        "clusters-0-final"), kmeansOutput, measure, 0.001, 10, true, 0.0, false);
    // run ClusterDumper
    ClusterDumper clusterDumper = new ClusterDumper(finalClusterPath(conf,
        output, 10), new Path(kmeansOutput, "clusteredPoints"));
    clusterDumper.printClusters(termDictionary);
  }
View Full Code Here

    Path kmeansOutput = new Path(output, "kmeans");
  FuzzyKMeansDriver.run(conf, getTestTempDirPath("testdata"), new Path(
        output, "clusters-0-final"), kmeansOutput, measure, 0.001, 10, 1.1f, true,
        true, 0, true);
    // run ClusterDumper
    ClusterDumper clusterDumper = new ClusterDumper(finalClusterPath(conf,
        output, 10), new Path(kmeansOutput, "clusteredPoints"));
    clusterDumper.printClusters(termDictionary);
  }
View Full Code Here

    Path output = getTestTempDirPath("output");
    Configuration conf = new Configuration();
    MeanShiftCanopyDriver.run(conf, getTestTempDirPath("testdata"), output,
        measure, kernelProfile, 0.5, 0.01, 0.05, 10, false, true, true);
    // run ClusterDumper
    ClusterDumper clusterDumper = new ClusterDumper(finalClusterPath(conf,
        output, 10), new Path(output, "clusteredPoints"));
    clusterDumper.printClusters(termDictionary);
  }
View Full Code Here

            .size());
    Configuration conf = new Configuration();
    DirichletDriver.run(conf, getTestTempDirPath("testdata"), output,
        description, 15, 10, 1.0, true, true, 0, true);
    // run ClusterDumper
    ClusterDumper clusterDumper = new ClusterDumper(finalClusterPath(conf,
        output, 10), new Path(output, "clusteredPoints"));
    clusterDumper.printClusters(termDictionary);
  }
View Full Code Here

            .size());
    Configuration conf = new Configuration();
    DirichletDriver.run(conf, getTestTempDirPath("testdata"), output,
        description, 15, 10, 1.0, true, true, 0, true);
    // run ClusterDumper
    ClusterDumper clusterDumper = new ClusterDumper(finalClusterPath(conf,
        output, 10), new Path(output, "clusteredPoints"));
    clusterDumper.printClusters(termDictionary);
  }
View Full Code Here

        directoryContainingConvertedInput, clusters, k, measure);
    log.info("Running KMeans");
    KMeansDriver.run(conf, directoryContainingConvertedInput, clusters, output,
        measure, convergenceDelta, maxIterations, true, false);
    // run ClusterDumper
    ClusterDumper clusterDumper = new ClusterDumper(finalClusterPath(conf,
        output, maxIterations), new Path(output, "clusteredPoints"));
    clusterDumper.printClusters(null);
  }
View Full Code Here

    log.info("Running KMeans");
    KMeansDriver.run(conf, directoryContainingConvertedInput, new Path(output,
        Cluster.INITIAL_CLUSTERS_DIR), output, measure, convergenceDelta,
        maxIterations, true, false);
    // run ClusterDumper
    ClusterDumper clusterDumper = new ClusterDumper(finalClusterPath(conf,
        output, maxIterations), new Path(output, "clusteredPoints"));
    clusterDumper.printClusters(null);
  }
View Full Code Here

                        true,
                        emitMostLikely,
                        threshold,
                        false);
    // run ClusterDumper
    ClusterDumper clusterDumper =
        new ClusterDumper(new Path(output, "clusters-" + maxIterations), new Path(output, "clusteredPoints"));
    clusterDumper.printClusters(null);
  }
View Full Code Here

                                    convergenceDelta,
                                    maxIterations,
                                    true,
                                    true, false);
    // run ClusterDumper
    ClusterDumper clusterDumper =
        new ClusterDumper(new Path(output, "clusters-" + maxIterations), new Path(output, "clusteredPoints"));
    clusterDumper.printClusters(null);
  }
View Full Code Here

TOP

Related Classes of org.apache.mahout.utils.clustering.ClusterDumper$TermIndexWeight

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.