Package org.apache.mahout.math.matrix.impl

Examples of org.apache.mahout.math.matrix.impl.DenseDoubleMatrix2D


    Vector currentVector = getInitialVector(corpus);
    Vector previousVector = new DenseVector(currentVector.size());
    Matrix basis = new SparseRowMatrix(new int[]{desiredRank, corpus.numCols()});
    basis.assignRow(0, currentVector);
    double beta = 0;
    DoubleMatrix2D triDiag = new DenseDoubleMatrix2D(desiredRank, desiredRank);
    for (int i = 1; i < desiredRank; i++) {
      startTime(TimingSection.ITERATE);
      Vector nextVector = isSymmetric ? corpus.times(currentVector) : corpus.timesSquared(currentVector);
      log.info("{} passes through the corpus so far...", i);
      calculateScaleFactor(nextVector);
      nextVector.assign(new Scale(1 / scaleFactor));
      nextVector.assign(previousVector, new PlusMult(-beta));
      // now orthogonalize
      double alpha = currentVector.dot(nextVector);
      nextVector.assign(currentVector, new PlusMult(-alpha));
      endTime(TimingSection.ITERATE);
      startTime(TimingSection.ORTHOGANLIZE);
      orthoganalizeAgainstAllButLast(nextVector, basis);
      endTime(TimingSection.ORTHOGANLIZE);
      // and normalize
      beta = nextVector.norm(2);
      if (outOfRange(beta) || outOfRange(alpha)) {
        log.warn("Lanczos parameters out of range: alpha = {}, beta = {}.  Bailing out early!", alpha, beta);
        break;
      }
      nextVector.assign(new Scale(1 / beta));
      basis.assignRow(i, nextVector);
      previousVector = currentVector;
      currentVector = nextVector;
      // save the projections and norms!
      triDiag.set(i - 1, i - 1, alpha);
      if (i < desiredRank - 1) {
        triDiag.set(i - 1, i, beta);
        triDiag.set(i, i - 1, beta);
      }
    }
    startTime(TimingSection.TRIDIAG_DECOMP);

    log.info("Lanczos iteration complete - now to diagonalize the tri-diagonal auxiliary matrix.");
View Full Code Here


   */
  public DoubleMatrix2D make(double[][] values) {
    if (this == SPARSE) {
      return new SparseDoubleMatrix2D(values);
    } else {
      return new DenseDoubleMatrix2D(values);
    }
  }
View Full Code Here

  /** Constructs a matrix with the given shape, each cell initialized with zero. */
  public DoubleMatrix2D make(int rows, int columns) {
    if (this == SPARSE) {
      return new SparseDoubleMatrix2D(rows, columns);
    } else {
      return new DenseDoubleMatrix2D(rows, columns);
    }
  }
View Full Code Here

    int m = rows;
    int n = columns;
    int p = B.columns;

    if (C == null) {
      C = new DenseDoubleMatrix2D(m, p);
    }
    if (B.rows != n) {
      throw new IllegalArgumentException("Matrix2D inner dimensions must agree");
    }
    if (C.rows != m || C.columns != p) {
View Full Code Here

    int m = rows;
    int n = columns;
    int p = B.columns;

    if (C == null) {
      C = new DenseDoubleMatrix2D(m, p);
    }
    if (B.rows != n) {
      throw new IllegalArgumentException("Matrix2D inner dimensions must agree");
    }
    if (C.rows != m || C.columns != p) {
View Full Code Here

        D[i][i + 1] = e[i];
      } else if (e[i] < 0) {
        D[i][i - 1] = e[i];
      }
    }
    return new DenseDoubleMatrix2D(D);
  }
View Full Code Here

   * Returns the eigenvector matrix, <tt>V</tt>
   *
   * @return <tt>V</tt>
   */
  public DoubleMatrix2D getV() {
    return new DenseDoubleMatrix2D(V);
  }
View Full Code Here

        final int [][] stemsTfByDocument = preprocessingContext.allStems.tfByDocument;
        final byte [] stemsFieldIndices = preprocessingContext.allStems.fieldIndices;

        if (documentCount == 0)
        {
            vsmContext.termDocumentMatrix = new DenseDoubleMatrix2D(0, 0);
            vsmContext.stemToRowIndex = new IntIntOpenHashMap();
            return;
        }

        // Determine the index of the title field
        int titleFieldIndex = -1;
        final String [] fieldsName = preprocessingContext.allFields.name;
        for (int i = 0; i < fieldsName.length; i++)
        {
            if (Document.TITLE.equals(fieldsName[i]))
            {
                titleFieldIndex = i;
                break;
            }
        }

        // Determine the stems we, ideally, should include in the matrix
        int [] stemsToInclude = computeRequiredStemIndices(preprocessingContext);

        // Sort stems by weight, so that stems get included in the matrix in the order
        // of frequency
        final double [] stemsWeight = new double [stemsToInclude.length];
        for (int i = 0; i < stemsToInclude.length; i++)
        {
            final int stemIndex = stemsToInclude[i];
            stemsWeight[i] = termWeighting.calculateTermWeight(stemsTf[stemIndex],
                stemsTfByDocument[stemIndex].length / 2, documentCount)
                * getWeightBoost(titleFieldIndex, stemsFieldIndices[stemIndex]);
        }
        final int [] stemWeightOrder = IndirectSort.mergesort(0, stemsWeight.length,
            new IndirectComparator.DescendingDoubleComparator(stemsWeight));

        // Calculate the number of terms we can include to fulfill the max matrix size
        final int maxRows = maximumMatrixSize / documentCount;
        final DoubleMatrix2D tdMatrix = new DenseDoubleMatrix2D(Math.min(maxRows,
            stemsToInclude.length), documentCount);

        for (int i = 0; i < stemWeightOrder.length && i < maxRows; i++)
        {
            final int stemIndex = stemsToInclude[stemWeightOrder[i]];
            final int [] tfByDocument = stemsTfByDocument[stemIndex];
            final int df = tfByDocument.length / 2;
            final byte fieldIndices = stemsFieldIndices[stemIndex];

            for (int j = 0; j < df; j++) {
                double weight = termWeighting.calculateTermWeight(
                    tfByDocument[j * 2 + 1], df, documentCount);

                weight *= getWeightBoost(titleFieldIndex, fieldIndices);
                tdMatrix.set(i, tfByDocument[j * 2], weight);
            }
        }

        // Convert stemsToInclude into tdMatrixStemIndices
        final IntIntOpenHashMap stemToRowIndex = new IntIntOpenHashMap();
        for (int i = 0; i < stemWeightOrder.length && i < tdMatrix.rows(); i++)
        {
            stemToRowIndex.put(stemsToInclude[stemWeightOrder[i]], i);
        }

        // Store the results
View Full Code Here

        int [] featureIndex, ITermWeighting termWeighting)
    {
        final IntIntOpenHashMap stemToRowIndex = vsmContext.stemToRowIndex;
        if (featureIndex.length == 0)
        {
            return new DenseDoubleMatrix2D(stemToRowIndex.size(), 0);
        }

        final DoubleMatrix2D phraseMatrix = new SparseDoubleMatrix2D(stemToRowIndex
            .size(), featureIndex.length);
View Full Code Here

{
    @Test
    public void testComputeOrthogonalityOrthogonal()
    {
        /** An orthogonal matrix */
        DoubleMatrix2D orthogonal = new DenseDoubleMatrix2D(new double [] []
        {
            {
                1.00, 0.00, 0.00, 0.00, 0.00
            },
            {
View Full Code Here

TOP

Related Classes of org.apache.mahout.math.matrix.impl.DenseDoubleMatrix2D

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.