Package org.apache.mahout.math

Examples of org.apache.mahout.math.Vector


      Canopy testCanopy = referenceEuclidean.get(canopyIx);
      int[] expectedNumPoints = {5, 5, 3};
      double[][] expectedCentroids = { {1.8, 1.8}, {4.2, 4.2}, {4.666666666666667, 4.666666666666667}};
      assertEquals("canopy points " + canopyIx, expectedNumPoints[canopyIx], testCanopy.getNumPoints());
      double[] refCentroid = expectedCentroids[canopyIx];
      Vector testCentroid = testCanopy.computeCentroid();
      for (int pointIx = 0; pointIx < refCentroid.length; pointIx++) {
        assertEquals("canopy centroid " + canopyIx + '[' + pointIx + ']', refCentroid[pointIx], testCentroid
            .get(pointIx));
      }
    }
  }
View Full Code Here


    double factor = 1.0;
    if (label == 0.0) {
      factor = -1.0;
    }
   
    Vector updateVector = dataPoint.times(factor).times(this.learningRate);
    PerceptronTrainer.LOG.debug("Updatevec: " + updateVector);
   
    model.addDelta(updateVector);
    model.shiftBias(factor * this.learningRate);
    PerceptronTrainer.LOG.debug(model.toString());
View Full Code Here

  public double distance(Vector v1, Vector v2) {
    if (v1.size() != v2.size()) {
      throw new CardinalityException();
    }
    double result = 0;
    Vector vector = v1.minus(v2);
    Iterator<Vector.Element> iter = vector.iterateNonZero();
    // this contains all non zero elements between the two
    while (iter.hasNext()) {
      Vector.Element e = iter.next();
      result += Math.abs(e.get());
    }
View Full Code Here

 
  public double dot(Vector a, Vector b) {
    boolean sameVector = a == b;
    Iterator<Vector.Element> it = a.iterateNonZero();
    Vector.Element el;
    Vector weights = getWeights();
    double dot = 0;
    while (it.hasNext() && (el = it.next()) != null) {
      double elementValue = el.get();
      double value = elementValue * (sameVector ? elementValue : b.getQuick(el.index()));
      value *= weights.getQuick(el.index())
      dot += value;
    }
    return dot;
  }
View Full Code Here

    trainer = new WinnowTrainer(3);
  }

  public void testUpdate() throws Exception {
    double[] labels = { 0.0, 0.0, 0.0, 1.0 };
    Vector labelset = new DenseVector(labels);
    double[][] values = new double[3][4];
    for (int i = 0; i < 3; i++) {
      values[i][0] = 1.0;
      values[i][1] = 1.0;
      values[i][2] = 1.0;
View Full Code Here

 
  private static List<VectorWritable> getPoints(double[][] raw) {
    List<VectorWritable> points = new ArrayList<VectorWritable>();
    int i = 0;
    for (double[] fr : raw) {
      Vector vec = new RandomAccessSparseVector(String.valueOf(i++), fr.length);
      vec.assign(fr);
      points.add(new VectorWritable(vec));
    }
    return points;
  }
View Full Code Here

    while (reader.next(key, value)) {
      clusterCount++;
      int id = value.getId();
      assertTrue(set.add(id)); // validate unique id's
     
      Vector v = value.getCenter();
      assertVectorEquals(raw[id], v); // validate values match
    }

    assertEquals(4, clusterCount); // validate sample count
  }
View Full Code Here

  @Override
  protected void setUp() throws Exception {
    super.setUp();
    double[] values = {0.0, 1.0, 0.0, 1.0, 0.0};
    Vector hyperplane = new DenseVector(values);
    this.model = new LinearModel(hyperplane, 0.1, 0.5);
  }
View Full Code Here

    this.model = new LinearModel(hyperplane, 0.1, 0.5);
  }

  public void testClassify() {
    double[] valuesFalse = {1.0, 0.0, 1.0, 0.0, 1.0};
    Vector dataPointFalse = new DenseVector(valuesFalse);
    assertFalse(this.model.classify(dataPointFalse));

    double[] valuesTrue = {0.0, 1.0, 0.0, 1.0, 0.0};
    Vector dataPointTrue = new DenseVector(valuesTrue);
    assertTrue(this.model.classify(dataPointTrue));
  }
View Full Code Here

  public void testAddDelta() {
    double[] values = {1.0, -1.0, 1.0, -1.0, 1.0};
    this.model.addDelta(new DenseVector(values));

    double[] valuesFalse = {1.0, 0.0, 1.0, 0.0, 1.0};
    Vector dataPointFalse = new DenseVector(valuesFalse);
    assertTrue(this.model.classify(dataPointFalse));

    double[] valuesTrue = {0.0, 1.0, 0.0, 1.0, 0.0};
    Vector dataPointTrue = new DenseVector(valuesTrue);
    assertFalse(this.model.classify(dataPointTrue));
  }
View Full Code Here

TOP

Related Classes of org.apache.mahout.math.Vector

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.