}
Preconditions.checkNotNull(scoresPerFeature);
Preconditions.checkNotNull(scoresPerLabel);
Matrix scoresPerLabelAndFeature = new SparseMatrix(scoresPerLabel.size(), scoresPerFeature.size());
for (Pair<IntWritable,VectorWritable> entry : new SequenceFileDirIterable<IntWritable,VectorWritable>(
new Path(base, TrainNaiveBayesJob.SUMMED_OBSERVATIONS), PathType.LIST, PathFilters.partFilter(), conf)) {
scoresPerLabelAndFeature.assignRow(entry.getFirst().get(), entry.getSecond().get());
}
// perLabelThetaNormalizer is only used by the complementary model, we do not instantiate it for the standard model
Vector perLabelThetaNormalizer = null;
if (isComplementary) {