Package org.apache.mahout.clustering.evaluation

Examples of org.apache.mahout.clustering.evaluation.ClusterEvaluator


    List<VectorWritable> points = Lists.newArrayList();
    points.add(new VectorWritable(cluster.getCenter()));
    points.add(new VectorWritable(cluster.getCenter()));
    points.add(new VectorWritable(cluster.getCenter()));
    representativePoints.put(cluster.getId(), points);
    ClusterEvaluator evaluator = new ClusterEvaluator(representativePoints, clusters, measure);
    assertEquals("inter cluster density", 0.3656854249492381, evaluator.interClusterDensity(), EPSILON);
    assertEquals("intra cluster density", 0.3656854249492381, evaluator.intraClusterDensity(), EPSILON);
  }
View Full Code Here


    int numIterations = 10;
    Path clustersIn = new Path(output, "clusters-0-final");
    RepresentativePointsDriver.run(conf, clustersIn, new Path(output, "clusteredPoints"), output, measure,
        numIterations, true);
    //printRepPoints(numIterations);
    ClusterEvaluator evaluator = new ClusterEvaluator(conf, clustersIn);
    // now print out the Results
    System.out.println("Intra-cluster density = " + evaluator.intraClusterDensity());
    System.out.println("Inter-cluster density = " + evaluator.interClusterDensity());
  }
View Full Code Here

    int numIterations = 10;
    Path clustersIn = new Path(kmeansOutput, "clusters-2");
    RepresentativePointsDriver.run(conf, clustersIn, new Path(kmeansOutput, "clusteredPoints"), kmeansOutput, measure,
        numIterations, true);
    RepresentativePointsDriver.printRepresentativePoints(kmeansOutput, numIterations);
    ClusterEvaluator evaluator = new ClusterEvaluator(conf, clustersIn);
    // now print out the Results
    System.out.println("Intra-cluster density = " + evaluator.intraClusterDensity());
    System.out.println("Inter-cluster density = " + evaluator.interClusterDensity());
  }
View Full Code Here

    int numIterations = 10;
    Path clustersIn = new Path(fuzzyKMeansOutput, "clusters-4");
    RepresentativePointsDriver.run(conf, clustersIn, new Path(fuzzyKMeansOutput, "clusteredPoints"), fuzzyKMeansOutput,
        measure, numIterations, true);
    RepresentativePointsDriver.printRepresentativePoints(fuzzyKMeansOutput, numIterations);
    ClusterEvaluator evaluator = new ClusterEvaluator(conf, clustersIn);
    // now print out the Results
    System.out.println("Intra-cluster density = " + evaluator.intraClusterDensity());
    System.out.println("Inter-cluster density = " + evaluator.interClusterDensity());
  }
View Full Code Here

TOP

Related Classes of org.apache.mahout.clustering.evaluation.ClusterEvaluator

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.