Package org.apache.mahout.clustering.canopy

Examples of org.apache.mahout.clustering.canopy.Canopy


  @Test
  public void testEmptyCluster() throws IOException {
    ClusteringTestUtils.writePointsToFile(referenceData, getTestTempFilePath("testdata/file1"), fs, conf);
    DistanceMeasure measure = new EuclideanDistanceMeasure();
    initData(1, 0.25, measure);
    Canopy cluster = new Canopy(new DenseVector(new double[] {10, 10}), 19, measure);
    clusters.add(cluster);
    List<VectorWritable> points = Lists.newArrayList();
    representativePoints.put(cluster.getId(), points);
    CDbwEvaluator evaluator = new CDbwEvaluator(representativePoints, clusters, measure);
    System.out.println("CDbw = " + evaluator.getCDbw());
    System.out.println("Intra-cluster density = " + evaluator.intraClusterDensity());
    System.out.println("Inter-cluster density = " + evaluator.interClusterDensity());
    System.out.println("Separation = " + evaluator.separation());
View Full Code Here


  @Test
  public void testSingleValueCluster() throws IOException {
    ClusteringTestUtils.writePointsToFile(referenceData, getTestTempFilePath("testdata/file1"), fs, conf);
    DistanceMeasure measure = new EuclideanDistanceMeasure();
    initData(1, 0.25, measure);
    Canopy cluster = new Canopy(new DenseVector(new double[] {0, 0}), 19, measure);
    clusters.add(cluster);
    List<VectorWritable> points = Lists.newArrayList();
    points.add(new VectorWritable(cluster.getCenter().plus(new DenseVector(new double[] {1, 1}))));
    representativePoints.put(cluster.getId(), points);
    CDbwEvaluator evaluator = new CDbwEvaluator(representativePoints, clusters, measure);
    System.out.println("CDbw = " + evaluator.getCDbw());
    System.out.println("Intra-cluster density = " + evaluator.intraClusterDensity());
    System.out.println("Inter-cluster density = " + evaluator.interClusterDensity());
    System.out.println("Separation = " + evaluator.separation());
View Full Code Here

  @Test
  public void testAllSameValueCluster() throws IOException {
    ClusteringTestUtils.writePointsToFile(referenceData, getTestTempFilePath("testdata/file1"), fs, conf);
    DistanceMeasure measure = new EuclideanDistanceMeasure();
    initData(1, 0.25, measure);
    Canopy cluster = new Canopy(new DenseVector(new double[] {0, 0}), 19, measure);
    clusters.add(cluster);
    List<VectorWritable> points = Lists.newArrayList();
    points.add(new VectorWritable(cluster.getCenter()));
    points.add(new VectorWritable(cluster.getCenter()));
    points.add(new VectorWritable(cluster.getCenter()));
    representativePoints.put(cluster.getId(), points);
    CDbwEvaluator evaluator = new CDbwEvaluator(representativePoints, clusters, measure);
    System.out.println("CDbw = " + evaluator.getCDbw());
    System.out.println("Intra-cluster density = " + evaluator.intraClusterDensity());
    System.out.println("Inter-cluster density = " + evaluator.interClusterDensity());
    System.out.println("Separation = " + evaluator.separation());
View Full Code Here

  @Test
  public void testAlmostSameValueCluster() throws IOException {
    ClusteringTestUtils.writePointsToFile(referenceData, getTestTempFilePath("testdata/file1"), fs, conf);
    DistanceMeasure measure = new EuclideanDistanceMeasure();
    initData(1, 0.25, measure);
    Canopy cluster = new Canopy(new DenseVector(new double[] {0, 0}), 19, measure);
    clusters.add(cluster);
    List<VectorWritable> points = Lists.newArrayList();
    Vector delta = new DenseVector(new double[] {0, Double.MIN_NORMAL});
    points.add(new VectorWritable(delta.clone()));
    points.add(new VectorWritable(delta.clone()));
    points.add(new VectorWritable(delta.clone()));
    points.add(new VectorWritable(delta.clone()));
    points.add(new VectorWritable(delta.clone()));
    representativePoints.put(cluster.getId(), points);
    CDbwEvaluator evaluator = new CDbwEvaluator(representativePoints, clusters, measure);
    System.out.println("CDbw = " + evaluator.getCDbw());
    System.out.println("Intra-cluster density = " + evaluator.intraClusterDensity());
    System.out.println("Inter-cluster density = " + evaluator.interClusterDensity());
    System.out.println("Separation = " + evaluator.separation());
View Full Code Here

  @Test
  public void testCanopyAsFormatString() {
    double[] d = { 1.1, 2.2, 3.3 };
    Vector m = new DenseVector(d);
    Cluster cluster = new Canopy(m, 123, measure);
    String formatString = cluster.asFormatString(null);
    assertEquals("C-123{n=0 c=[1.100, 2.200, 3.300] r=[]}", formatString);
  }
View Full Code Here

  @Test
  public void testCanopyAsFormatStringSparse() {
    double[] d = { 1.1, 0.0, 3.3 };
    Vector m = new SequentialAccessSparseVector(3);
    m.assign(d);
    Cluster cluster = new Canopy(m, 123, measure);
    String formatString = cluster.asFormatString(null);
    assertEquals("C-123{n=0 c=[0:1.100, 2:3.300] r=[]}", formatString);
  }
View Full Code Here

  @Test
  public void testCanopyAsFormatStringWithBindings() {
    double[] d = { 1.1, 2.2, 3.3 };
    Vector m = new DenseVector(d);
    Cluster cluster = new Canopy(m, 123, measure);
    String[] bindings = { "fee", null, null };
    String formatString = cluster.asFormatString(bindings);
    assertEquals("C-123{n=0 c=[fee:1.100, 1:2.200, 2:3.300] r=[]}", formatString);
  }
View Full Code Here

  @Test
  public void testCanopyAsFormatStringSparseWithBindings() {
    double[] d = { 1.1, 0.0, 3.3 };
    Vector m = new SequentialAccessSparseVector(3);
    m.assign(d);
    Cluster cluster = new Canopy(m, 123, measure);
    String formatString = cluster.asFormatString(null);
    assertEquals("C-123{n=0 c=[0:1.100, 2:3.300] r=[]}", formatString);
  }
View Full Code Here

 
  @Test
  public void testCanopyClassification() {
    List<Cluster> models = Lists.newArrayList();
    DistanceMeasure measure = new ManhattanDistanceMeasure();
    models.add(new Canopy(new DenseVector(2).assign(1), 0, measure));
    models.add(new Canopy(new DenseVector(2), 1, measure));
    models.add(new Canopy(new DenseVector(2).assign(-1), 2, measure));
    ClusterClassifier classifier = new ClusterClassifier(models, new CanopyClusteringPolicy());
    Vector pdf = classifier.classify(new DenseVector(2));
    assertEquals("[0,0]", "[0.200, 0.600, 0.200]", AbstractCluster.formatVector(pdf, null));
    pdf = classifier.classify(new DenseVector(2).assign(2));
    assertEquals("[2,2]", "[0.493, 0.296, 0.211]", AbstractCluster.formatVector(pdf, null));
View Full Code Here

        } else {
          seedVectors.add(new NamedVector(vector, cluster.getIdentifier()));
        }
      } else if (valueClass.equals(Canopy.class)) {
        // get the cluster info
        Canopy canopy = (Canopy) value;
        Vector vector = canopy.getCenter();
        if (vector instanceof NamedVector) {
          seedVectors.add((NamedVector) vector);
        } else {
          seedVectors.add(new NamedVector(vector, canopy.getIdentifier()));
        }
      } else if (valueClass.equals(Vector.class)) {
        Vector vector = (Vector) value;
        if (vector instanceof NamedVector) {
          seedVectors.add((NamedVector) vector);
View Full Code Here

TOP

Related Classes of org.apache.mahout.clustering.canopy.Canopy

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.