Package org.apache.lucene.search.similarities

Examples of org.apache.lucene.search.similarities.Similarity$ExactSimScorer


    IndexReader reader = DirectoryReader.open(FSDirectory.open(indexLocation));
    IndexSearcher searcher = new IndexSearcher(reader);

    if (similarity.equalsIgnoreCase("BM25")) {
      Similarity simBM25 = new BM25Similarity();
      searcher.setSimilarity(simBM25);
    } else if (similarity.equalsIgnoreCase("LM")) {
      NamedList<Double> paramNamedList = new NamedList<Double>();
      paramNamedList.add("mu", 2500.0);
      SolrParams params = SolrParams.toSolrParams(paramNamedList);
      LMDirichletSimilarityFactory factory = new LMDirichletSimilarityFactory();
      factory.init(params);
      Similarity simLMDir = factory.getSimilarity();
      searcher.setSimilarity(simLMDir);
    }

    QueryParser p = new QueryParser(Version.LUCENE_43, IndexStatuses.StatusField.TEXT.name, IndexStatuses.ANALYZER);
    Query query = p.parse(queryText);
View Full Code Here


    public NumericDocValues getNormValues(String field) {
      FieldInfo fieldInfo = fieldInfos.get(field);
      if (fieldInfo == null || fieldInfo.omitsNorms())
        return null;
      NumericDocValues norms = cachedNormValues;
      Similarity sim = getSimilarity();
      if (!field.equals(cachedFieldName) || sim != cachedSimilarity) { // not cached?
        Info info = getInfo(field);
        int numTokens = info != null ? info.numTokens : 0;
        int numOverlapTokens = info != null ? info.numOverlapTokens : 0;
        float boost = info != null ? info.getBoost() : 1.0f;
        FieldInvertState invertState = new FieldInvertState(field, 0, numTokens, numOverlapTokens, 0, boost);
        long value = sim.computeNorm(invertState);
        norms = new MemoryIndexNormDocValues(value);
        // cache it for future reuse
        cachedNormValues = norms;
        cachedFieldName = field;
        cachedSimilarity = sim;
View Full Code Here

  private ConnectedMoreLikeThisQueryBuilder.INPUT_TYPE inputType;
  private TermQuery findById;

  public MoreLikeThisBuilder( DocumentBuilderIndexedEntity documentBuilder, SearchFactoryImplementor searchFactory ) {
    this.documentBuilder = documentBuilder;
    Similarity configuredSimilarity = searchFactory.getIndexBindings().get( documentBuilder.getBeanClass() ).getSimilarity();
    if ( configuredSimilarity instanceof TFIDFSimilarity ) {
      this.similarity = (TFIDFSimilarity) configuredSimilarity;
    }
    else {
      throw log.requireTFIDFSimilarity( documentBuilder.getBeanClass() );
View Full Code Here

  public void testFloatNorms() throws IOException {

    Directory dir = newDirectory();
    IndexWriterConfig config = newIndexWriterConfig(TEST_VERSION_CURRENT,
        new MockAnalyzer(random()));
    Similarity provider = new MySimProvider();
    config.setSimilarity(provider);
    RandomIndexWriter writer = new RandomIndexWriter(random(), dir, config);
    final LineFileDocs docs = new LineFileDocs(random());
    int num = atLeast(100);
    for (int i = 0; i < num; i++) {
View Full Code Here

  public void testSweetSpotComputeNorm() {
 
    final SweetSpotSimilarity ss = new SweetSpotSimilarity();
    ss.setLengthNormFactors(1,1,0.5f,true);

    Similarity d = new DefaultSimilarity();
    Similarity s = ss;


    // base case, should degrade
    FieldInvertState invertState = new FieldInvertState("bogus");
    invertState.setBoost(1.0f);
    for (int i = 1; i < 1000; i++) {
      invertState.setLength(i);
      assertEquals("base case: i="+i,
                   computeAndGetNorm(d, invertState),
                   computeAndGetNorm(s, invertState),
                   0.0f);
    }

    // make a sweet spot
 
    ss.setLengthNormFactors(3,10,0.5f,true);
 
    for (int i = 3; i <=10; i++) {
      invertState.setLength(i);
      assertEquals("3,10: spot i="+i,
                   1.0f,
                   computeAndDecodeNorm(ss, ss, invertState),
                   0.0f);
    }
 
    for (int i = 10; i < 1000; i++) {
      invertState.setLength(i-9);
      final byte normD = computeAndGetNorm(d, invertState);
      invertState.setLength(i);
      final byte normS = computeAndGetNorm(s, invertState);
      assertEquals("3,10: 10<x : i="+i,
                   normD,
                   normS,
                   0.0f);
    }


    // separate sweet spot for certain fields

    final SweetSpotSimilarity ssBar = new SweetSpotSimilarity();
    ssBar.setLengthNormFactors(8,13, 0.5f, false);
    final SweetSpotSimilarity ssYak = new SweetSpotSimilarity();
    ssYak.setLengthNormFactors(6,9, 0.5f, false);
    final SweetSpotSimilarity ssA = new SweetSpotSimilarity();
    ssA.setLengthNormFactors(5,8,0.5f, false);
    final SweetSpotSimilarity ssB = new SweetSpotSimilarity();
    ssB.setLengthNormFactors(5,8,0.1f, false);
   
    Similarity sp = new PerFieldSimilarityWrapper() {
      @Override
      public Similarity get(String field) {
        if (field.equals("bar"))
          return ssBar;
        else if (field.equals("yak"))
View Full Code Here

    public NumericDocValues getNormValues(String field) {
      FieldInfo fieldInfo = fieldInfos.get(field);
      if (fieldInfo == null || fieldInfo.omitsNorms())
        return null;
      NumericDocValues norms = cachedNormValues;
      Similarity sim = getSimilarity();
      if (!field.equals(cachedFieldName) || sim != cachedSimilarity) { // not cached?
        Info info = getInfo(field);
        int numTokens = info != null ? info.numTokens : 0;
        int numOverlapTokens = info != null ? info.numOverlapTokens : 0;
        float boost = info != null ? info.getBoost() : 1.0f;
        FieldInvertState invertState = new FieldInvertState(field, 0, numTokens, numOverlapTokens, 0, boost);
        long value = sim.computeNorm(invertState);
        norms = new MemoryIndexNormDocValues(value);
        // cache it for future reuse
        cachedNormValues = norms;
        cachedFieldName = field;
        cachedSimilarity = sim;
View Full Code Here

    List<AtomicReaderContext> leaves = topReaderContext.leaves();
    int subIndex = ReaderUtil.subIndex(11, leaves);
    for (int i = 0, c = leaves.size(); i < c; i++) {
      final AtomicReaderContext ctx = leaves.get(i);
    
      final Similarity sim = new DefaultSimilarity() {
        @Override
        public float sloppyFreq(int distance) {
          return 0.0f;
        }
      };
 
      final Similarity oldSim = searcher.getSimilarity();
      Scorer spanScorer;
      try {
        searcher.setSimilarity(sim);
        SpanNearQuery snq = new SpanNearQuery(
                                new SpanQuery[] {
View Full Code Here

    IndexReader ir = iw.getReader();
    iw.close();
   
    // no boosting
    IndexSearcher searcher1 = newSearcher(ir, false);
    final Similarity base = searcher1.getSimilarity();
    // boosting
    IndexSearcher searcher2 = newSearcher(ir, false);
    searcher2.setSimilarity(new PerFieldSimilarityWrapper() {
      final Similarity fooSim = new BoostingSimilarity(base, "foo_boost");

      @Override
      public Similarity get(String field) {
        return "foo".equals(field) ? fooSim : base;
      }

      @Override
      public float coord(int overlap, int maxOverlap) {
        return base.coord(overlap, maxOverlap);
      }

      @Override
      public float queryNorm(float sumOfSquaredWeights) {
        return base.queryNorm(sumOfSquaredWeights);
      }
    });
   
    // in this case, we searched on field "foo". first document should have 2x the score.
    TermQuery tq = new TermQuery(new Term("foo", "quick"));
View Full Code Here

  public void buildIndex(Directory dir) throws IOException {
    Random random = random();
    IndexWriterConfig config = newIndexWriterConfig(TEST_VERSION_CURRENT,
        new MockAnalyzer(random()));
    Similarity provider = new MySimProvider();
    config.setSimilarity(provider);
    RandomIndexWriter writer = new RandomIndexWriter(random, dir, config);
    final LineFileDocs docs = new LineFileDocs(random, defaultCodecSupportsDocValues());
    int num = atLeast(100);
    for (int i = 0; i < num; i++) {
View Full Code Here

      SearchConfiguration cfg,
      WorkerBuildContext buildContext
  ) {
    String indexName = getIndexName( entity, cfg );
    Properties[] indexProperties = getIndexProperties( cfg, indexName );
    Similarity similarity = createSimilarity( indexName, cfg, indexProperties[0], entity, buildContext );
    boolean isDynamicSharding = isShardingDynamic( indexProperties[0], buildContext );

    IndexManager[] indexManagers = new IndexManager[0];
    if ( !isDynamicSharding ) {
      indexManagers = createIndexManagers(
View Full Code Here

TOP

Related Classes of org.apache.lucene.search.similarities.Similarity$ExactSimScorer

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.