Package org.apache.hadoop.mapred

Examples of org.apache.hadoop.mapred.JobClient$SplitComparator


                             String measureClassName,
                             double t1,
                             double t2,
                             double convergenceDelta,
                             int maxIterations) throws IOException {
    JobClient client = new JobClient();
    JobConf conf = new JobConf(Job.class);
   
    Path outPath = new Path(output);
    client.setConf(conf);
    FileSystem dfs = FileSystem.get(outPath.toUri(), conf);
    if (dfs.exists(outPath)) {
      dfs.delete(outPath, true);
    }
    String directoryContainingConvertedInput = output + Constants.DIRECTORY_CONTAINING_CONVERTED_INPUT;
View Full Code Here


      CommandLineUtil.printHelp(group);
    }
  }
 
  public static void runJob(String input, String output) throws IOException {
    JobClient client = new JobClient();
    JobConf conf = new JobConf(org.apache.mahout.clustering.syntheticcontrol.meanshift.OutputDriver.class);
   
    conf.setOutputKeyClass(Text.class);
    conf.setOutputValueClass(Text.class);
    conf.setInputFormat(SequenceFileInputFormat.class);
   
    FileInputFormat.setInputPaths(conf, new Path(input));
    FileOutputFormat.setOutputPath(conf, new Path(output));
   
    conf.setMapperClass(OutputMapper.class);
   
    conf.setReducerClass(Reducer.class);
    conf.setNumReduceTasks(0);
   
    client.setConf(conf);
    JobClient.runJob(conf);
  }
View Full Code Here

   * @throws ClassNotFoundException
   */
  @Override
  public void runJob(String input, String output, BayesParameters params) throws IOException {
   
    Configurable client = new JobClient();
    JobConf conf = new JobConf(BayesWeightSummerDriver.class);
    conf.setJobName("TfIdf Driver running over input: " + input);
   
    conf.setOutputKeyClass(StringTuple.class);
    conf.setOutputValueClass(DoubleWritable.class);
   
    FileInputFormat.addInputPath(conf, new Path(output + "/trainer-termDocCount"));
    FileInputFormat.addInputPath(conf, new Path(output + "/trainer-wordFreq"));
    FileInputFormat.addInputPath(conf, new Path(output + "/trainer-featureCount"));
    Path outPath = new Path(output + "/trainer-tfIdf/");
    FileOutputFormat.setOutputPath(conf, outPath);
   
    // conf.setNumMapTasks(100);
   
    conf.setJarByClass(BayesTfIdfDriver.class);
   
    conf.setMapperClass(BayesTfIdfMapper.class);
    conf.setInputFormat(SequenceFileInputFormat.class);
    conf.setCombinerClass(BayesTfIdfReducer.class);
   
    conf.setReducerClass(BayesTfIdfReducer.class);
   
    conf.setOutputFormat(BayesTfIdfOutputFormat.class);
   
    conf
        .set("io.serializations",
          "org.apache.hadoop.io.serializer.JavaSerialization,org.apache.hadoop.io.serializer.WritableSerialization");
    // Dont ever forget this. People should keep track of how hadoop conf
    // parameters and make or break a piece of code
   
    FileSystem dfs = FileSystem.get(outPath.toUri(), conf);
    if (dfs.exists(outPath)) {
      dfs.delete(outPath, true);
    }
   
    Path interimFile = new Path(output + "/trainer-docCount/part-*");
   
    Map<String,Double> labelDocumentCounts = SequenceFileModelReader.readLabelDocumentCounts(dfs,
      interimFile, conf);
   
    DefaultStringifier<Map<String,Double>> mapStringifier = new DefaultStringifier<Map<String,Double>>(conf,
        GenericsUtil.getClass(labelDocumentCounts));
   
    String labelDocumentCountString = mapStringifier.toString(labelDocumentCounts);
    log.info("Counts of documents in Each Label");
    Map<String,Double> c = mapStringifier.fromString(labelDocumentCountString);
    log.info("{}", c);
   
    conf.set("cnaivebayes.labelDocumentCounts", labelDocumentCountString);
    log.info(params.print());
    if (params.get("dataSource").equals("hbase")) {
      HBaseConfiguration hc = new HBaseConfiguration(new Configuration());
      HTableDescriptor ht = new HTableDescriptor(output);
      HColumnDescriptor hcd = new HColumnDescriptor(BayesConstants.HBASE_COLUMN_FAMILY + ':');
      hcd.setBloomfilter(true);
      hcd.setInMemory(true);
      hcd.setMaxVersions(1);
      hcd.setBlockCacheEnabled(true);
      ht.addFamily(hcd);
     
      log.info("Connecting to hbase...");
      HBaseAdmin hba = new HBaseAdmin(hc);
      log.info("Creating Table {}", output);
     
      if (hba.tableExists(output)) {
        hba.disableTable(output);
        hba.deleteTable(output);
        hba.majorCompact(".META.");
      }
      hba.createTable(ht);
      conf.set("output.table", output);
    }
    conf.set("bayes.parameters", params.toString());
   
    client.setConf(conf);
   
    JobClient.runJob(conf);
  }
View Full Code Here

   * @param t2
   *          the canopy T2 threshold
   */
  private static void runJob(String input, String output, String measureClassName,
                             double t1, double t2) throws IOException {
    JobClient client = new JobClient();
    JobConf conf = new JobConf(Job.class);
   
    Path outPath = new Path(output);
    client.setConf(conf);
    FileSystem dfs = FileSystem.get(outPath.toUri(), conf);
    if (dfs.exists(outPath)) {
      dfs.delete(outPath, true);
    }
    String directoryContainingConvertedInput = output + Constants.DIRECTORY_CONTAINING_CONVERTED_INPUT;
View Full Code Here

   * @param output
   *          the output pathname String
   */
  @Override
  public void runJob(String input, String output, BayesParameters params) throws IOException {
    Configurable client = new JobClient();
    JobConf conf = new JobConf(BayesWeightSummerDriver.class);
    conf.setJobName("Bayes Weight Summer Driver running over input: " + input);
   
    conf.setOutputKeyClass(StringTuple.class);
    conf.setOutputValueClass(DoubleWritable.class);
   
    FileInputFormat.addInputPath(conf, new Path(output + "/trainer-tfIdf/trainer-tfIdf"));
    Path outPath = new Path(output + "/trainer-weights");
    FileOutputFormat.setOutputPath(conf, outPath);
    // conf.setNumReduceTasks(1);
    // conf.setNumMapTasks(100);
    conf.setMapperClass(BayesWeightSummerMapper.class);
    // see the javadoc for the spec for file input formats: first token is key,
    // rest is input. Whole document on one line
    conf.setInputFormat(SequenceFileInputFormat.class);
    conf.setCombinerClass(BayesWeightSummerReducer.class);
    conf.setReducerClass(BayesWeightSummerReducer.class);
    conf.setOutputFormat(BayesWeightSummerOutputFormat.class);
    FileSystem dfs = FileSystem.get(outPath.toUri(), conf);
    if (dfs.exists(outPath)) {
      dfs.delete(outPath, true);
    }
    conf.set("bayes.parameters", params.toString());
   
    conf.set("output.table", output);
   
    client.setConf(conf);
   
    JobClient.runJob(conf);
  }
View Full Code Here

   *
   * @param params
   *          The Job parameters containing the gramSize, input output folders, defaultCat, encoding
   */
  public static void runJob(Parameters params) throws IOException {
    Configurable client = new JobClient();
    JobConf conf = new JobConf(BayesClassifierDriver.class);
    conf.setJobName("Bayes Classifier Driver running over input: " + params.get("testDirPath"));
    conf.setOutputKeyClass(StringTuple.class);
    conf.setOutputValueClass(DoubleWritable.class);
   
    FileInputFormat.setInputPaths(conf, new Path(params.get("testDirPath")));
    Path outPath = new Path(params.get("testDirPath") + "-output");
    FileOutputFormat.setOutputPath(conf, outPath);
   
    conf.setInputFormat(KeyValueTextInputFormat.class);
    conf.setMapperClass(BayesClassifierMapper.class);
    conf.setCombinerClass(BayesClassifierReducer.class);
    conf.setReducerClass(BayesClassifierReducer.class);
    conf.setOutputFormat(SequenceFileOutputFormat.class);
   
    conf.set("io.serializations", "org.apache.hadoop.io.serializer.JavaSerialization,"
                                  + "org.apache.hadoop.io.serializer.WritableSerialization");
   
    FileSystem dfs = FileSystem.get(outPath.toUri(), conf);
    if (dfs.exists(outPath)) {
      dfs.delete(outPath, true);
    }
    conf.set("bayes.parameters", params.toString());
   
    client.setConf(conf);
    JobClient.runJob(conf);
   
    Path outputFiles = new Path(outPath.toString() + "/part*");
    ConfusionMatrix matrix = readResult(dfs, outputFiles, conf, params);
    log.info("{}", matrix.summarize());
View Full Code Here

      clusterIdToPoints = Collections.emptyMap();
    }
  }

  public void printClusters() throws IOException, InstantiationException, IllegalAccessException {
    JobClient client = new JobClient();
    JobConf conf = new JobConf(Job.class);
    client.setConf(conf);

    String[] dictionary = null;
    if (this.termDictionary != null) {
      if (dictionaryFormat.equals("text")) {
        dictionary = VectorHelper.loadTermDictionary(new File(this.termDictionary));
View Full Code Here

   * @param output
   *          the output pathname String
   */
  @Override
  public void runJob(String input, String output, BayesParameters params) throws IOException {
    Configurable client = new JobClient();
    JobConf conf = new JobConf(CBayesThetaNormalizerDriver.class);
    conf.setJobName("Complementary Bayes Theta Normalizer Driver running over input: " + input);
   
    conf.setOutputKeyClass(StringTuple.class);
    conf.setOutputValueClass(DoubleWritable.class);
    FileInputFormat.addInputPath(conf, new Path(output + "/trainer-weights/Sigma_j"));
    FileInputFormat.addInputPath(conf, new Path(output + "/trainer-tfIdf/trainer-tfIdf"));
    Path outPath = new Path(output + "/trainer-thetaNormalizer");
    FileOutputFormat.setOutputPath(conf, outPath);
    // conf.setNumMapTasks(100);
    // conf.setNumReduceTasks(1);
    conf.setMapperClass(CBayesThetaNormalizerMapper.class);
    conf.setInputFormat(SequenceFileInputFormat.class);
    conf.setCombinerClass(CBayesThetaNormalizerReducer.class);
    conf.setReducerClass(CBayesThetaNormalizerReducer.class);
    conf.setOutputFormat(SequenceFileOutputFormat.class);
    conf
        .set("io.serializations",
          "org.apache.hadoop.io.serializer.JavaSerialization,org.apache.hadoop.io.serializer.WritableSerialization");
    // Dont ever forget this. People should keep track of how hadoop conf
    // parameters and make or break a piece of code
   
    FileSystem dfs = FileSystem.get(outPath.toUri(), conf);
    if (dfs.exists(outPath)) {
      dfs.delete(outPath, true);
    }
   
    Path sigmaKFiles = new Path(output + "/trainer-weights/Sigma_k/*");
    Map<String,Double> labelWeightSum = SequenceFileModelReader.readLabelSums(dfs, sigmaKFiles, conf);
    DefaultStringifier<Map<String,Double>> mapStringifier = new DefaultStringifier<Map<String,Double>>(conf,
        GenericsUtil.getClass(labelWeightSum));
    String labelWeightSumString = mapStringifier.toString(labelWeightSum);
   
    log.info("Sigma_k for Each Label");
    Map<String,Double> c = mapStringifier.fromString(labelWeightSumString);
    log.info("{}", c);
    conf.set("cnaivebayes.sigma_k", labelWeightSumString);
   
    Path sigmaKSigmaJFile = new Path(output + "/trainer-weights/Sigma_kSigma_j/*");
    double sigmaJSigmaK = SequenceFileModelReader.readSigmaJSigmaK(dfs, sigmaKSigmaJFile, conf);
    DefaultStringifier<Double> stringifier = new DefaultStringifier<Double>(conf, Double.class);
    String sigmaJSigmaKString = stringifier.toString(sigmaJSigmaK);
   
    log.info("Sigma_kSigma_j for each Label and for each Features");
    double retSigmaJSigmaK = stringifier.fromString(sigmaJSigmaKString);
    log.info("{}", retSigmaJSigmaK);
    conf.set("cnaivebayes.sigma_jSigma_k", sigmaJSigmaKString);
   
    Path vocabCountFile = new Path(output + "/trainer-tfIdf/trainer-vocabCount/*");
    double vocabCount = SequenceFileModelReader.readVocabCount(dfs, vocabCountFile, conf);
    String vocabCountString = stringifier.toString(vocabCount);
   
    log.info("Vocabulary Count");
    conf.set("cnaivebayes.vocabCount", vocabCountString);
    double retvocabCount = stringifier.fromString(vocabCountString);
    log.info("{}", retvocabCount);
    conf.set("bayes.parameters", params.toString());
    conf.set("output.table", output);
    client.setConf(conf);
   
    JobClient.runJob(conf);
   
  }
View Full Code Here

                                         int maxDFPercent,
                                         Path dictionaryFilePath,
                                         Path output,
                                         boolean sequentialAccess) throws IOException {
   
    Configurable client = new JobClient();
    JobConf conf = new JobConf(TFIDFConverter.class);
    conf.set("io.serializations", "org.apache.hadoop.io.serializer.JavaSerialization,"
                                  + "org.apache.hadoop.io.serializer.WritableSerialization");
    // this conf parameter needs to be set enable serialisation of conf values
   
    conf.setJobName(": MakePartialVectors: input-folder: " + input + ", dictionary-file: "
                    + dictionaryFilePath.toString());
    conf.setLong(FEATURE_COUNT, featureCount);
    conf.setLong(VECTOR_COUNT, vectorCount);
    conf.setInt(MIN_DF, minDf);
    conf.setInt(MAX_DF_PERCENTAGE, maxDFPercent);
    conf.setBoolean(PartialVectorMerger.SEQUENTIAL_ACCESS, sequentialAccess);
    conf.setOutputKeyClass(Text.class);
    conf.setOutputValueClass(VectorWritable.class);
    DistributedCache.setCacheFiles(new URI[] {dictionaryFilePath.toUri()}, conf);
    FileInputFormat.setInputPaths(conf, new Path(input));
   
    FileOutputFormat.setOutputPath(conf, output);
   
    conf.setMapperClass(IdentityMapper.class);
    conf.setInputFormat(SequenceFileInputFormat.class);
    conf.setReducerClass(TFIDFPartialVectorReducer.class);
    conf.setOutputFormat(SequenceFileOutputFormat.class);
    FileSystem dfs = FileSystem.get(output.toUri(), conf);
    if (dfs.exists(output)) {
      dfs.delete(output, true);
    }
   
    client.setConf(conf);
    JobClient.runJob(conf);
  }
View Full Code Here

   * Count the document frequencies of features in parallel using Map/Reduce. The input documents have to be
   * in {@link SequenceFile} format
   */
  private static void startDFCounting(Path input, Path output) throws IOException {
   
    Configurable client = new JobClient();
    JobConf conf = new JobConf(TFIDFConverter.class);
    conf.set("io.serializations", "org.apache.hadoop.io.serializer.JavaSerialization,"
                                  + "org.apache.hadoop.io.serializer.WritableSerialization");
    // this conf parameter needs to be set enable serialisation of conf values
   
    conf.setJobName("VectorTfIdf Document Frequency Count running over input: " + input.toString());
    conf.setOutputKeyClass(IntWritable.class);
    conf.setOutputValueClass(LongWritable.class);
   
    FileInputFormat.setInputPaths(conf, input);
    FileOutputFormat.setOutputPath(conf, output);
   
    conf.setMapperClass(TermDocumentCountMapper.class);
   
    conf.setInputFormat(SequenceFileInputFormat.class);
    conf.setCombinerClass(TermDocumentCountReducer.class);
    conf.setReducerClass(TermDocumentCountReducer.class);
    conf.setOutputFormat(SequenceFileOutputFormat.class);
   
    FileSystem dfs = FileSystem.get(output.toUri(), conf);
    if (dfs.exists(output)) {
      dfs.delete(output, true);
    }
    client.setConf(conf);
    JobClient.runJob(conf);
  }
View Full Code Here

TOP

Related Classes of org.apache.hadoop.mapred.JobClient$SplitComparator

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.