Package org.apache.hadoop.hive.ql.exec

Examples of org.apache.hadoop.hive.ql.exec.JoinOperator$JoinExprMap


     
      Set<Map.Entry<JoinOperator, QBJoinTree>> joinCtx = pGraphContext.getJoinContext().entrySet();
      Iterator<Map.Entry<JoinOperator, QBJoinTree>> joinCtxIter = joinCtx.iterator();
      while (joinCtxIter.hasNext()) {
        Map.Entry<JoinOperator, QBJoinTree> joinEntry = joinCtxIter.next();
        JoinOperator joinOp = joinEntry.getKey();
        QBJoinTree   qbJoin = joinEntry.getValue();
        int mapJoinPos = mapSideJoin(joinOp, qbJoin);
        if (mapJoinPos >= 0) {
          listMapJoinOps.add(convertMapJoin(pactx, joinOp, qbJoin, mapJoinPos));
        }
View Full Code Here


      joinCondns[i] = new org.apache.hadoop.hive.ql.plan.joinCond(condn);
    }

    joinDesc desc = new joinDesc(exprMap, outputColumnNames, joinCondns);
    desc.setReversedExprs(reversedExprs);
    JoinOperator joinOp = (JoinOperator) OperatorFactory.getAndMakeChild(desc,
                                    new RowSchema(outputRS.getColumnInfos()), rightOps);
    joinOp.setColumnExprMap(colExprMap);
    joinOp.setPosToAliasMap(posToAliasMap);
    return putOpInsertMap(joinOp, outputRS);
  }
View Full Code Here

    }

    // Type checking and implicit type conversion for join keys
    genJoinOperatorTypeCheck(joinSrcOp, srcOps);
   
    JoinOperator joinOp = (JoinOperator)genJoinOperatorChildren(joinTree, joinSrcOp, srcOps);
    joinContext.put(joinOp, joinTree);
    return joinOp;
  }
View Full Code Here

      // be called for leafs.
      assert(!stack.isEmpty());

      // LineageCtx
      LineageCtx lCtx = (LineageCtx) procCtx;
      JoinOperator op = (JoinOperator)nd;
      JoinDesc jd = op.getConf();

      // The input operator to the join is always a reduce sink operator
      ReduceSinkOperator inpOp = (ReduceSinkOperator)getParent(stack);
      ReduceSinkDesc rd = inpOp.getConf();
      int tag = rd.getTag();

      // Iterate over the outputs of the join operator and merge the
      // dependencies of the columns that corresponding to the tag.
      int cnt = 0;
      List<ExprNodeDesc> exprs = jd.getExprs().get((byte)tag);
      for(ColumnInfo ci : op.getSchema().getSignature()) {
        if (jd.getReversedExprs().get(ci.getInternalName()) != tag) {
          continue;
        }

        // Otherwise look up the expression corresponding to this ci
View Full Code Here

      Set<Map.Entry<JoinOperator, QBJoinTree>> joinCtx = pGraphContext.getJoinContext().entrySet();
      Iterator<Map.Entry<JoinOperator, QBJoinTree>> joinCtxIter = joinCtx.iterator();
      while (joinCtxIter.hasNext()) {
        Map.Entry<JoinOperator, QBJoinTree> joinEntry = joinCtxIter.next();
        JoinOperator joinOp = joinEntry.getKey();
        QBJoinTree qbJoin = joinEntry.getValue();
        int mapJoinPos = mapSideJoin(joinOp, qbJoin);
        if (mapJoinPos >= 0) {
          MapJoinOperator mapJoinOp = generateMapJoinOperator(pactx, joinOp, qbJoin, mapJoinPos);
          listMapJoinOps.add(mapJoinOp);
View Full Code Here

   * The Node Processor for Column Pruning on Join Operators.
   */
  public static class ColumnPrunerJoinProc implements NodeProcessor {
    public Object process(Node nd, Stack<Node> stack, NodeProcessorCtx ctx,
        Object... nodeOutputs) throws SemanticException {
      JoinOperator op = (JoinOperator) nd;
      pruneJoinOperator(ctx, op, op.getConf(), op.getColumnExprMap(), null,
          false);
      return null;
    }
View Full Code Here

      if ((childOperators.size() == 1)
          && (childOperators.get(0) instanceof JoinOperator)) {
        assert parentOperators.size() == 1;
        Operator<? extends Serializable> par = parentOperators.get(0);
        JoinOperator childJoin = (JoinOperator) childOperators.get(0);
        RowResolver parRR = opToParseCtxMap.get(par).getRowResolver();
        List<String> childJoinCols = cppCtx.getJoinPrunedColLists().get(
            childJoin).get((byte) conf.getTag());
        boolean[] flags = new boolean[conf.getValueCols().size()];
        for (int i = 0; i < flags.length; i++) {
View Full Code Here

    private ConditionalTask processCurrentTask(MapRedTask currTask,
        ConditionalTask conditionalTask, Context context)
        throws SemanticException {

      // whether it contains common join op; if contains, return this common join op
      JoinOperator joinOp = getJoinOp(currTask);
      if (joinOp == null) {
        return null;
      }
      currTask.setTaskTag(Task.COMMON_JOIN);

      MapredWork currWork = currTask.getWork();
      // create conditional work list and task list
      List<Serializable> listWorks = new ArrayList<Serializable>();
      List<Task<? extends Serializable>> listTasks = new ArrayList<Task<? extends Serializable>>();

      // create alias to task mapping and alias to input file mapping for resolver
      HashMap<String, Task<? extends Serializable>> aliasToTask = new HashMap<String, Task<? extends Serializable>>();
      HashMap<String, ArrayList<String>> pathToAliases = currTask.getWork().getPathToAliases();

      // get parseCtx for this Join Operator
      ParseContext parseCtx = physicalContext.getParseContext();
      QBJoinTree joinTree = parseCtx.getJoinContext().get(joinOp);

      // start to generate multiple map join tasks
      JoinDesc joinDesc = joinOp.getConf();
      Byte[] order = joinDesc.getTagOrder();
      int numAliases = order.length;
     
      long aliasTotalKnownInputSize = 0;
      HashMap<String, Long> aliasToSize = new HashMap<String, Long>();
      try {
        // go over all the input paths, and calculate a known total size, known
        // size for each input alias.
        Utilities.getInputSummary(context, currWork, null).getLength();
       
        // set alias to size mapping, this can be used to determine if one table
        // is choosen as big table, what's the total size of left tables, which
        // are going to be small tables.
        for (Map.Entry<String, ArrayList<String>> entry : pathToAliases.entrySet()) {
          String path = entry.getKey();
          List<String> aliasList = entry.getValue();
          ContentSummary cs = context.getCS(path);
          if (cs != null) {
            long size = cs.getLength();
            for (String alias : aliasList) {
              aliasTotalKnownInputSize += size;
              Long es = aliasToSize.get(alias);
              if(es == null) {
                es = new Long(0);
              }
              es += size;
              aliasToSize.put(alias, es);
            }
          }
        }
       
        HashSet<Integer> bigTableCandidates = MapJoinProcessor.getBigTableCandidates(joinDesc.getConds());
       
        // no table could be the big table; there is no need to convert
        if (bigTableCandidates == null) {
          return null;
        }
        currWork.setOpParseCtxMap(parseCtx.getOpParseCtx());
        currWork.setJoinTree(joinTree);

        String xml = currWork.toXML();
        String bigTableAlias = null;

        long ThresholdOfSmallTblSizeSum = HiveConf.getLongVar(context.getConf(),
            HiveConf.ConfVars.HIVESMALLTABLESFILESIZE);
        for (int i = 0; i < numAliases; i++) {
          // this table cannot be big table
          if (!bigTableCandidates.contains(i)) {
            continue;
          }
         
          // create map join task and set big table as i
          // deep copy a new mapred work from xml
          InputStream in = new ByteArrayInputStream(xml.getBytes("UTF-8"));
          MapredWork newWork = Utilities.deserializeMapRedWork(in, physicalContext.getConf());
          // create a mapred task for this work
          MapRedTask newTask = (MapRedTask) TaskFactory.get(newWork, physicalContext
              .getParseContext().getConf());
          JoinOperator newJoinOp = getJoinOp(newTask);

          // optimize this newWork and assume big table position is i
          bigTableAlias = MapJoinProcessor.genMapJoinOpAndLocalWork(newWork, newJoinOp, i);

          Long aliasKnownSize = aliasToSize.get(bigTableAlias);
View Full Code Here

    }

    JoinDesc desc = new JoinDesc(exprMap, outputColumnNames,
        join.getNoOuterJoin(), joinCondns, filterMap);
    desc.setReversedExprs(reversedExprs);
    JoinOperator joinOp = (JoinOperator) OperatorFactory.getAndMakeChild(desc,
        new RowSchema(outputRS.getColumnInfos()), rightOps);
    joinOp.setColumnExprMap(colExprMap);
    joinOp.setPosToAliasMap(posToAliasMap);
    return putOpInsertMap(joinOp, outputRS);
  }
View Full Code Here

   */
  public static class SkewJoinJoinProcessor implements NodeProcessor {
    public Object process(Node nd, Stack<Node> stack, NodeProcessorCtx ctx,
        Object... nodeOutputs) throws SemanticException {
      SkewJoinProcCtx context = (SkewJoinProcCtx) ctx;
      JoinOperator op = (JoinOperator) nd;
      ParseContext parseContext = context.getParseCtx();
      Task<? extends Serializable> currentTsk = context.getCurrentTask();
      GenMRSkewJoinProcessor.processSkewJoin(op, currentTsk, parseContext);
      return null;
    }
View Full Code Here

TOP

Related Classes of org.apache.hadoop.hive.ql.exec.JoinOperator$JoinExprMap

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.