Package org.apache.hadoop.hive.ql.exec

Examples of org.apache.hadoop.hive.ql.exec.GroupByOperator$varLenFields


    QBParseInfo parseInfo = qb.getParseInfo();

    // ////// Generate GroupbyOperator for a map-side partial aggregation
    Map<String, GenericUDAFEvaluator> genericUDAFEvaluators =
      new LinkedHashMap<String, GenericUDAFEvaluator>();
    GroupByOperator groupByOperatorInfo = (GroupByOperator)genGroupByPlanMapGroupByOperator(qb,
      dest, inputOperatorInfo, groupByDesc.Mode.HASH, genericUDAFEvaluators);

    this.groupOpToInputTables.put(groupByOperatorInfo, this.opParseCtx.get(
        inputOperatorInfo).getRR().getTableNames());
    // Optimize the scenario when there are no grouping keys and no distinct - 2 map-reduce jobs are not needed
View Full Code Here


    @Override
    public Object process(Node nd, Stack<Node> stack, NodeProcessorCtx procCtx,
        Object... nodeOutputs) throws SemanticException {
      // GBY,RS,GBY... (top to bottom)
      GroupByOperator op = (GroupByOperator) stack.get(stack.size() - 3);
      checkBucketGroupBy(op);
      return null;
    }
View Full Code Here

    }

    @Override
    public Object process(Node nd, Stack<Node> stack, NodeProcessorCtx procCtx,
        Object... nodeOutputs) {
      GroupByOperator op = (GroupByOperator)nd;
      TableAccessCtx tableAccessCtx = (TableAccessCtx)procCtx;

      // Get the key column names, and check if the keys are all constants
      // or columns (not expressions). If yes, proceed.
      List<String> keyColNames =
          TableAccessAnalyzer.getKeyColNames(op.getConf().getKeys());

      if (keyColNames == null) {
        // we are done, since there are no keys to check for
        return null;
      }

      // Walk the operator tree to the TableScan and build the mapping
      // along the way for the columns that the group by uses as keys
      TableScanOperator tso = TableAccessAnalyzer.genRootTableScan(
          op.getParentOperators().get(0), keyColNames);

      if (tso == null) {
        // Could not find an allowed path to a table scan operator,
        // hence we are done
        return null;
View Full Code Here

    @Override
    public Object process(Node nd, Stack<Node> stack, NodeProcessorCtx procCtx,
        Object... nodeOutputs) throws SemanticException {
      // GBY,RS,GBY... (top to bottom)
      GroupByOperator groupByOp = (GroupByOperator) stack.get(stack.size() - 3);

      GroupByOptimizerContext ctx = (GroupByOptimizerContext) procCtx;

      if (!checkGroupByOperatorProcessed(ctx, groupByOp)) {
        processGroupBy(ctx, stack, groupByOp, 2);
View Full Code Here

    @Override
    public Object process(Node nd, Stack<Node> stack, NodeProcessorCtx procCtx,
        Object... nodeOutputs) throws SemanticException {
      // GBY,RS,GBY,RS,GBY... (top to bottom)
      GroupByOperator groupByOp = (GroupByOperator) stack.get(stack.size() - 5);
      GroupByOptimizerContext ctx = (GroupByOptimizerContext) procCtx;

      if (!checkGroupByOperatorProcessed(ctx, groupByOp)) {
        processGroupBy(ctx, stack, groupByOp, 4);
      }
View Full Code Here

   * Node Processor for Column Pruning on Group By Operators.
   */
  public static class ColumnPrunerGroupByProc implements NodeProcessor {
    public Object process(Node nd, Stack<Node> stack, NodeProcessorCtx ctx,
        Object... nodeOutputs) throws SemanticException {
      GroupByOperator op = (GroupByOperator) nd;
      ColumnPrunerProcCtx cppCtx = (ColumnPrunerProcCtx) ctx;
      List<String> colLists = new ArrayList<String>();
      GroupByDesc conf = op.getConf();
      ArrayList<ExprNodeDesc> keys = conf.getKeys();
      for (ExprNodeDesc key : keys) {
        colLists = Utilities.mergeUniqElems(colLists, key.getCols());
      }

View Full Code Here

        return nd;
      }

      for (Node op : stack) {
        if (op instanceof GroupByOperator) {
          GroupByOperator gby = (GroupByOperator) op;
          if (!gby.getConf().isDistinctLike()) {
            // GroupBy not distinct like, disabling
            walkerCtx.convertNotMetadataOnly();
            return nd;
          }
        }
View Full Code Here

      LocalMapJoinProcCtx context = (LocalMapJoinProcCtx) ctx;
      if (!nd.getName().equals("GBY")) {
        return null;
      }
      context.setFollowedByGroupBy(true);
      GroupByOperator groupByOp = (GroupByOperator) nd;
      float groupByMemoryUsage = context.getParseCtx().getConf().getFloatVar(
          HiveConf.ConfVars.HIVEMAPJOINFOLLOWEDBYMAPAGGRHASHMEMORY);
      groupByOp.getConf().setGroupByMemoryUsage(groupByMemoryUsage);
      return null;
    }
View Full Code Here

        false);

    // ////// 2. Generate GroupbyOperator
    Map<String, GenericUDAFEvaluator> genericUDAFEvaluators =
      new LinkedHashMap<String, GenericUDAFEvaluator>();
    GroupByOperator groupByOperatorInfo = (GroupByOperator) genGroupByPlanGroupByOperator(
      parseInfo, dest, reduceSinkOperatorInfo, GroupByDesc.Mode.PARTIAL1,
      genericUDAFEvaluators);

    int numReducers = -1;
    if (grpByExprs.isEmpty()) {
View Full Code Here

    }

    // ////// Generate GroupbyOperator for a map-side partial aggregation
    Map<String, GenericUDAFEvaluator> genericUDAFEvaluators =
      new LinkedHashMap<String, GenericUDAFEvaluator>();
    GroupByOperator groupByOperatorInfo =
      (GroupByOperator) genGroupByPlanMapGroupByOperator(
        qb,
        dest,
        grpByExprs,
        inputOperatorInfo,
View Full Code Here

TOP

Related Classes of org.apache.hadoop.hive.ql.exec.GroupByOperator$varLenFields

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.