Package org.apache.commons.math3.userguide.genetics

Examples of org.apache.commons.math3.userguide.genetics.ImageEvolutionExample$Display$ImagePainter


            dest.meanImpl = new Mean(dest.secondMoment);
        } else {
            dest.meanImpl = source.meanImpl.copy();
        }
        if (source.getGeoMeanImpl() instanceof GeometricMean) {
            dest.geoMeanImpl = new GeometricMean((SumOfLogs) dest.sumLogImpl);
        } else {
            dest.geoMeanImpl = source.geoMeanImpl.copy();
        }

        // Make sure that if stat == statImpl in source, same
View Full Code Here


            dest.varianceImpl = new Variance(dest.secondMoment);
        } else {
            dest.varianceImpl = source.varianceImpl.copy();
        }
        if (source.meanImpl instanceof Mean) {
            dest.meanImpl = new Mean(dest.secondMoment);
        } else {
            dest.meanImpl = source.meanImpl.copy();
        }
        if (source.getGeoMeanImpl() instanceof GeometricMean) {
            dest.geoMeanImpl = new GeometricMean((SumOfLogs) dest.sumLogImpl);
View Full Code Here

     * <p>Double.NaN is returned if no values have been added.</p>
     *
     * @return the population variance
     */
    public double getPopulationVariance() {
        Variance populationVariance = new Variance(secondMoment);
        populationVariance.setBiasCorrected(false);
        return populationVariance.getResult();
    }
View Full Code Here

        dest.secondMoment = source.secondMoment.copy();
        dest.n = source.n;

        // Keep commons-math supplied statistics with embedded moments in synch
        if (source.getVarianceImpl() instanceof Variance) {
            dest.varianceImpl = new Variance(dest.secondMoment);
        } else {
            dest.varianceImpl = source.varianceImpl.copy();
        }
        if (source.meanImpl instanceof Mean) {
            dest.meanImpl = new Mean(dest.secondMoment);
View Full Code Here

        for (int i = 0; i < k; ++i) {
            sumImpl[i]     = new Sum();
            sumSqImpl[i]   = new SumOfSquares();
            minImpl[i]     = new Min();
            maxImpl[i]     = new Max();
            sumLogImpl[i= new SumOfLogs();
            geoMeanImpl[i] = new GeometricMean();
            meanImpl[i]    = new Mean();
        }

        covarianceImpl =
View Full Code Here

        geoMeanImpl = new StorelessUnivariateStatistic[k];
        meanImpl    = new StorelessUnivariateStatistic[k];

        for (int i = 0; i < k; ++i) {
            sumImpl[i]     = new Sum();
            sumSqImpl[i]   = new SumOfSquares();
            minImpl[i]     = new Min();
            maxImpl[i]     = new Max();
            sumLogImpl[i= new SumOfLogs();
            geoMeanImpl[i] = new GeometricMean();
            meanImpl[i]    = new Mean();
View Full Code Here

     * @param checker Convergence checker.
     */
    protected BaseOptimizer(ConvergenceChecker<PAIR> checker) {
        this.checker = checker;

        evaluations = new Incrementor(0, new MaxEvalCallback());
        iterations = new Incrementor(0, new MaxIterCallback());
    }
View Full Code Here

        DimensionMismatchException, NonSelfAdjointOperatorException,
        NonPositiveDefiniteOperatorException, IllConditionedOperatorException,
        MaxCountExceededException {
        checkParameters(a, m, b, x);

        final IterationManager manager = getIterationManager();
        /* Initialization counts as an iteration. */
        manager.resetIterationCount();
        manager.incrementIterationCount();

        final State state;
        state = new State(a, m, b, goodb, shift, delta, check);
        state.init();
        state.refineSolution(x);
        IterativeLinearSolverEvent event;
        event = new DefaultIterativeLinearSolverEvent(this,
                                                      manager.getIterations(),
                                                      x,
                                                      b,
                                                      state.getNormOfResidual());
        if (state.bEqualsNullVector()) {
            /* If b = 0 exactly, stop with x = 0. */
            manager.fireTerminationEvent(event);
            return x;
        }
        /* Cause termination if beta is essentially zero. */
        final boolean earlyStop;
        earlyStop = state.betaEqualsZero() || state.hasConverged();
        manager.fireInitializationEvent(event);
        if (!earlyStop) {
            do {
                manager.incrementIterationCount();
                event = new DefaultIterativeLinearSolverEvent(this,
                                                              manager.getIterations(),
                                                              x,
                                                              b,
                                                              state.getNormOfResidual());
                manager.fireIterationStartedEvent(event);
                state.update();
                state.refineSolution(x);
                event = new DefaultIterativeLinearSolverEvent(this,
                                                              manager.getIterations(),
                                                              x,
                                                              b,
                                                              state.getNormOfResidual());
                manager.fireIterationPerformedEvent(event);
            } while (!state.hasConverged());
        }
        event = new DefaultIterativeLinearSolverEvent(this,
                                                      manager.getIterations(),
                                                      x,
                                                      b,
                                                      state.getNormOfResidual());
        manager.fireTerminationEvent(event);
        return x;
    }
View Full Code Here

  public void testSequence() {
    ProcessDefinition processDefinition = ProcessFactory.build("sequence")
        .compositeNode("sequence").initial().behaviour(new Sequence())
          .needsPrevious()
          .node("one").behaviour(new Display("one"))
          .node("2").behaviour(new WaitState())
          .node("two").behaviour(new Display("two"))
        .compositeEnd()
    .done();

    Execution execution = processDefinition.startExecution();
    execution.signal();
View Full Code Here

  public void testExecutionAndThread() {
    ProcessDefinition processDefinition = ProcessFactory.build("automatic")
        .node("wait 1").initial().behaviour(new WaitState())
          .transition().to("automatic 1")
        .node("automatic 1").behaviour(new Display("one"))
          .transition().to("wait 2")
        .node("wait 2").behaviour(new WaitState())
          .transition().to("automatic 2")
        .node("automatic 2").behaviour(new Display("two"))
          .transition().to("automatic 3")
        .node("automatic 3").behaviour(new Display("three"))
          .transition().to("automatic 4")
        .node("automatic 4").behaviour(new Display("four"))
          .transition().to("wait 3")
        .node("wait 3").behaviour(new WaitState())
    .done();
   
    Execution execution = processDefinition.startExecution();
View Full Code Here

TOP

Related Classes of org.apache.commons.math3.userguide.genetics.ImageEvolutionExample$Display$ImagePainter

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.