Package org.apache.commons.math3.stat.descriptive

Examples of org.apache.commons.math3.stat.descriptive.DescriptiveStatistics


    private Map<String, Double> certifiedValues;

    @Before
    public void setUp() throws IOException {
        descriptives = new DescriptiveStatistics();
        summaries = new SummaryStatistics();
        certifiedValues = new HashMap<String, Double>();

        loadData();
    }
View Full Code Here


     * values and execute multi-pass algorithms
     */
    @Test
    public void testDescriptiveStatistics() throws Exception {

        DescriptiveStatistics u = new DescriptiveStatistics();

        loadStats("data/PiDigits.txt", u);
        Assert.assertEquals("PiDigits: std", std, u.getStandardDeviation(), 1E-14);
        Assert.assertEquals("PiDigits: mean", mean, u.getMean(), 1E-14);

        loadStats("data/Mavro.txt", u);
        Assert.assertEquals("Mavro: std", std, u.getStandardDeviation(), 1E-14);
        Assert.assertEquals("Mavro: mean", mean, u.getMean(), 1E-14);

        loadStats("data/Michelso.txt", u);
        Assert.assertEquals("Michelso: std", std, u.getStandardDeviation(), 1E-14);
        Assert.assertEquals("Michelso: mean", mean, u.getMean(), 1E-14);

        loadStats("data/NumAcc1.txt", u);
        Assert.assertEquals("NumAcc1: std", std, u.getStandardDeviation(), 1E-14);
        Assert.assertEquals("NumAcc1: mean", mean, u.getMean(), 1E-14);

        loadStats("data/NumAcc2.txt", u);
        Assert.assertEquals("NumAcc2: std", std, u.getStandardDeviation(), 1E-14);
        Assert.assertEquals("NumAcc2: mean", mean, u.getMean(), 1E-14);
    }
View Full Code Here

    /**
     * loads a DescriptiveStatistics off of a test file
     */
    private void loadStats(String resource, Object u) throws Exception {

        DescriptiveStatistics d = null;
        SummaryStatistics s = null;
        if (u instanceof DescriptiveStatistics) {
            d = (DescriptiveStatistics) u;
        } else {
            s = (SummaryStatistics) u;
        }
        u.getClass().getDeclaredMethod(
                "clear", new Class[]{}).invoke(u, new Object[]{});
        mean = Double.NaN;
        std = Double.NaN;

        InputStream resourceAsStream = CertifiedDataTest.class.getResourceAsStream(resource);
        Assert.assertNotNull("Could not find resource "+resource,resourceAsStream);
        BufferedReader in =
            new BufferedReader(
                    new InputStreamReader(
                            resourceAsStream));

        String line = null;

        for (int j = 0; j < 60; j++) {
            line = in.readLine();
            if (j == 40) {
                mean =
                    Double.parseDouble(
                            line.substring(line.lastIndexOf(":") + 1).trim());
            }
            if (j == 41) {
                std =
                    Double.parseDouble(
                            line.substring(line.lastIndexOf(":") + 1).trim());
            }
        }

        line = in.readLine();

        while (line != null) {
            if (d != null) {
                d.addValue(Double.parseDouble(line.trim()));
            else {
                s.addValue(Double.parseDouble(line.trim()));
            }
            line = in.readLine();
        }
View Full Code Here

     * If alpha = 1, than it must be Cauchy distribution
     */
    @Test
    public void testCauchyCase() {
        StableRandomGenerator generator = new StableRandomGenerator(rg, 1d, 0.0);
        DescriptiveStatistics summary = new DescriptiveStatistics();

        for (int i = 0; i < sampleSize; ++i) {
            double sample = generator.nextNormalizedDouble();
            summary.addValue(sample);
        }

        // Standard Cauchy distribution should have zero median and mode
        double median = summary.getPercentile(50);
        Assert.assertEquals(0.0, median, 0.2);
    }
View Full Code Here

        UnivariateFunction f = new QuinticFunction();
        UnivariateOptimizer optimizer = new BrentOptimizer(1e-11, 1e-14);

        final DescriptiveStatistics[] stat = new DescriptiveStatistics[2];
        for (int i = 0; i < stat.length; i++) {
            stat[i] = new DescriptiveStatistics();
        }

        final double min = -0.75;
        final double max = 0.25;
        final int nSamples = 200;
View Full Code Here

     * @param sample Sample to normalize.
     * @return normalized (standardized) sample.
     * @since 2.2
     */
    public static double[] normalize(final double[] sample) {
        DescriptiveStatistics stats = new DescriptiveStatistics();

        // Add the data from the series to stats
        for (int i = 0; i < sample.length; i++) {
            stats.addValue(sample[i]);
        }

        // Compute mean and standard deviation
        double mean = stats.getMean();
        double standardDeviation = stats.getStandardDeviation();

        // initialize the standardizedSample, which has the same length as the sample
        double[] standardizedSample = new double[sample.length];

        for (int i = 0; i < sample.length; i++) {
View Full Code Here

     * values and execute multi-pass algorithms
     */
    @Test
    public void testDescriptiveStatistics() throws Exception {

        DescriptiveStatistics u = new DescriptiveStatistics();

        loadStats("data/PiDigits.txt", u);
        Assert.assertEquals("PiDigits: std", std, u.getStandardDeviation(), 1E-14);
        Assert.assertEquals("PiDigits: mean", mean, u.getMean(), 1E-14);

        loadStats("data/Mavro.txt", u);
        Assert.assertEquals("Mavro: std", std, u.getStandardDeviation(), 1E-14);
        Assert.assertEquals("Mavro: mean", mean, u.getMean(), 1E-14);

        loadStats("data/Michelso.txt", u);
        Assert.assertEquals("Michelso: std", std, u.getStandardDeviation(), 1E-14);
        Assert.assertEquals("Michelso: mean", mean, u.getMean(), 1E-14);

        loadStats("data/NumAcc1.txt", u);
        Assert.assertEquals("NumAcc1: std", std, u.getStandardDeviation(), 1E-14);
        Assert.assertEquals("NumAcc1: mean", mean, u.getMean(), 1E-14);

        loadStats("data/NumAcc2.txt", u);
        Assert.assertEquals("NumAcc2: std", std, u.getStandardDeviation(), 1E-14);
        Assert.assertEquals("NumAcc2: mean", mean, u.getMean(), 1E-14);
    }
View Full Code Here

    /**
     * loads a DescriptiveStatistics off of a test file
     */
    private void loadStats(String resource, Object u) throws Exception {

        DescriptiveStatistics d = null;
        SummaryStatistics s = null;
        if (u instanceof DescriptiveStatistics) {
            d = (DescriptiveStatistics) u;
        } else {
            s = (SummaryStatistics) u;
        }
        u.getClass().getDeclaredMethod(
                "clear", new Class[]{}).invoke(u, new Object[]{});
        mean = Double.NaN;
        std = Double.NaN;

        InputStream resourceAsStream = CertifiedDataTest.class.getResourceAsStream(resource);
        Assert.assertNotNull("Could not find resource "+resource,resourceAsStream);
        BufferedReader in =
            new BufferedReader(
                    new InputStreamReader(
                            resourceAsStream));

        String line = null;

        for (int j = 0; j < 60; j++) {
            line = in.readLine();
            if (j == 40) {
                mean =
                    Double.parseDouble(
                            line.substring(line.lastIndexOf(":") + 1).trim());
            }
            if (j == 41) {
                std =
                    Double.parseDouble(
                            line.substring(line.lastIndexOf(":") + 1).trim());
            }
        }

        line = in.readLine();

        while (line != null) {
            if (d != null) {
                d.addValue(Double.parseDouble(line.trim()));
            else {
                s.addValue(Double.parseDouble(line.trim()));
            }
            line = in.readLine();
        }
View Full Code Here

            sample[i] = FastMath.random();
        }
        // normalize this sample
        double standardizedSample[] = StatUtils.normalize(sample);

        DescriptiveStatistics stats = new DescriptiveStatistics();
        // Add the data from the array
        for (int i = 0; i < length; i++) {
            stats.addValue(standardizedSample[i]);
        }
        // the calculations do have a limited precision   
        double distance = 1E-10;
        // check the mean an standard deviation
        Assert.assertEquals(0.0, stats.getMean(), distance);
        Assert.assertEquals(1.0, stats.getStandardDeviation(), distance);

    }
View Full Code Here

     * @param sample Sample to normalize.
     * @return normalized (standardized) sample.
     * @since 2.2
     */
    public static double[] normalize(final double[] sample) {
        DescriptiveStatistics stats = new DescriptiveStatistics();

        // Add the data from the series to stats
        for (int i = 0; i < sample.length; i++) {
            stats.addValue(sample[i]);
        }

        // Compute mean and standard deviation
        double mean = stats.getMean();
        double standardDeviation = stats.getStandardDeviation();

        // initialize the standardizedSample, which has the same length as the sample
        double[] standardizedSample = new double[sample.length];

        for (int i = 0; i < sample.length; i++) {
View Full Code Here

TOP

Related Classes of org.apache.commons.math3.stat.descriptive.DescriptiveStatistics

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.