Package org.apache.commons.math3.random

Examples of org.apache.commons.math3.random.Well19937c


    /**
     * Construct a KolmogorovSmirnovTest instance with a default random data generator.
     */
    public KolmogorovSmirnovTest() {
        rng = new Well19937c();
    }
View Full Code Here


     * or the beginning (if {@link Position#HEAD}) of the array.
     */
    public static void shuffle(int[] list,
                               int start,
                               Position pos) {
        shuffle(list, start, pos, new Well19937c());
    }
View Full Code Here

     * @see #shuffle(int[],int,Position,RandomGenerator)
     *
     * @param list Array whose entries will be shuffled (in-place).
     */
    public static void shuffle(int[] list) {
        shuffle(list, new Well19937c());
    }
View Full Code Here

        final ProcessModel pm = new DefaultProcessModel(A, B, Q, initialState, initialErrorCovariance);
        final MeasurementModel mm = new DefaultMeasurementModel(H, R);
        final KalmanFilter filter = new KalmanFilter(pm, mm);

        final RandomGenerator rng = new Well19937c(1000);
        final NormalDistribution dist = new NormalDistribution(rng, 0, measurementNoise);

        for (int i = 0; i < iterations; i++) {
            // get the "real" cannonball position
            double x = cannonball.getX();
View Full Code Here

        final BivariateFunction bcf
            = new BicubicSplineInterpolatingFunction(xval, yval, zval,
                                                     dZdX, dZdY, dZdXdY);
        double x, y;

        final RandomGenerator rng = new Well19937c(1234567L); // "tol" depends on the seed.
        final UniformRealDistribution distX
            = new UniformRealDistribution(rng, xval[0], xval[xval.length - 1]);
        final UniformRealDistribution distY
            = new UniformRealDistribution(rng, yval[0], yval[yval.length - 1]);
View Full Code Here

        BivariateFunction bcf = new BicubicSplineInterpolatingFunction(xval, yval, zval,
                                                                       dZdX, dZdY, dZdXdY);
        double x, y;

        final RandomGenerator rng = new Well19937c(1234567L); // "tol" depends on the seed.
        final UniformRealDistribution distX
            = new UniformRealDistribution(rng, xval[0], xval[xval.length - 1]);
        final UniformRealDistribution distY
            = new UniformRealDistribution(rng, yval[0], yval[yval.length - 1]);
View Full Code Here

        BivariateGridInterpolator interpolator = new PiecewiseBicubicSplineInterpolator();
        BivariateFunction p = interpolator.interpolate(xval, yval, zval);
        double x, y;

        final RandomGenerator rng = new Well19937c(1234567L); // "tol" depends on the seed.
        final UniformRealDistribution distX = new UniformRealDistribution( rng, xval[0], xval[xval.length - 1] );
        final UniformRealDistribution distY = new UniformRealDistribution( rng, yval[0], yval[yval.length - 1] );

        final int numSamples = 50;
        final double tol = 2e-14;
View Full Code Here

        BivariateGridInterpolator interpolator = new PiecewiseBicubicSplineInterpolator();
        BivariateFunction p = interpolator.interpolate(xval, yval, zval);
        double x, y;

        final RandomGenerator rng = new Well19937c(1234567L); // "tol" depends on the seed.
        final UniformRealDistribution distX = new UniformRealDistribution( rng, xval[0], xval[xval.length - 1] );
        final UniformRealDistribution distY = new UniformRealDistribution( rng, yval[0], yval[yval.length - 1] );

        final int numSamples = 50;
        final double tol = 5e-13;
View Full Code Here

            expected = f.value( currentX );
            actual = interpolation.value( currentX );
            assertTrue( Precision.equals( expected, actual ) );
        }

        final RandomGenerator rng = new Well19937c( 1234567L ); // "tol" depends on the seed.
        final UniformRealDistribution distX =
            new UniformRealDistribution( rng, xValues[0], xValues[xValues.length - 1] );

        double sumError = 0;
        for ( int i = 0; i < numberOfSamples; i++ )
View Full Code Here

     * Verifies that Monte Carlo simulation gives results close to exact p values. This test is a
     * little long-running (more than two minutes on a fast machine), so is disabled by default.
     */
    // @Test
    public void testTwoSampleMonteCarlo() {
        final KolmogorovSmirnovTest test = new KolmogorovSmirnovTest(new Well19937c(1000));
        final int sampleSize = 14;
        final double tol = .001;
        final double[] shortUniform = new double[sampleSize];
        System.arraycopy(uniform, 0, shortUniform, 0, sampleSize);
        final double[] shortGaussian = new double[sampleSize];
View Full Code Here

TOP

Related Classes of org.apache.commons.math3.random.Well19937c

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.