Package org.apache.commons.math3.random

Examples of org.apache.commons.math3.random.Well1024a


    @Test
    public void testLinearCombination2DSDS() {
        // we compare accurate versus naive dot product implementations
        // on regular vectors (i.e. not extreme cases like in the previous test)
        Well1024a random = new Well1024a(0xc6af886975069f11l);

        for (int i = 0; i < 10000; ++i) {
            final DerivativeStructure[] u = new DerivativeStructure[4];
            final DerivativeStructure[] v = new DerivativeStructure[4];
            for (int j = 0; j < u.length; ++j) {
                u[j] = new DerivativeStructure(u.length, 1, j, 1e17 * random.nextDouble());
                v[j] = new DerivativeStructure(u.length, 1, 1e17 * random.nextDouble());
            }

            DerivativeStructure lin = u[0].linearCombination(u[0], v[0], u[1], v[1]);
            double ref = u[0].getValue() * v[0].getValue() +
                         u[1].getValue() * v[1].getValue();
 
View Full Code Here


    @Test
    public void testLinearCombination2DoubleDS() {
        // we compare accurate versus naive dot product implementations
        // on regular vectors (i.e. not extreme cases like in the previous test)
        Well1024a random = new Well1024a(0xc6af886975069f11l);

        for (int i = 0; i < 10000; ++i) {
            final double[] u = new double[4];
            final DerivativeStructure[] v = new DerivativeStructure[4];
            for (int j = 0; j < u.length; ++j) {
                u[j] = 1e17 * random.nextDouble();
                v[j] = new DerivativeStructure(u.length, 1, j, 1e17 * random.nextDouble());
            }

            DerivativeStructure lin = v[0].linearCombination(u[0], v[0], u[1], v[1]);
            double ref = u[0] * v[0].getValue() +
                         u[1] * v[1].getValue();
 
View Full Code Here

    @Test
    public void testLinearCombination2() {
        // we compare accurate versus naive dot product implementations
        // on regular vectors (i.e. not extreme cases like in the previous test)
        Well1024a random = new Well1024a(553267312521321234l);

        for (int i = 0; i < 10000; ++i) {
            final double ux = 1e17 * random.nextDouble();
            final double uy = 1e17 * random.nextDouble();
            final double uz = 1e17 * random.nextDouble();
            final double vx = 1e17 * random.nextDouble();
            final double vy = 1e17 * random.nextDouble();
            final double vz = 1e17 * random.nextDouble();
            final double sInline = MathArrays.linearCombination(ux, vx,
                                                                uy, vy,
                                                                uz, vz);
            final double sArray = MathArrays.linearCombination(new double[] {ux, uy, uz},
                                                               new double[] {vx, vy, vz});
View Full Code Here

    @Test
    public void testShuffleTail() {
        final int[] orig = new int[] { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
        final int[] list = orig.clone();
        final int start = 4;
        MathArrays.shuffle(list, start, MathArrays.Position.TAIL, new Well1024a(7654321L));

        // Ensure that all entries below index "start" did not move.
        for (int i = 0; i < start; i++) {
            Assert.assertEquals(orig[i], list[i]);
        }
View Full Code Here

    @Test
    public void testShuffleHead() {
        final int[] orig = new int[] { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
        final int[] list = orig.clone();
        final int start = 4;
        MathArrays.shuffle(list, start, MathArrays.Position.HEAD, new Well1024a(1234567L));

        // Ensure that all entries above index "start" did not move.
        for (int i = start + 1; i < orig.length; i++) {
            Assert.assertEquals(orig[i], list[i]);
        }
View Full Code Here

    @Test
    public void testLinearCombination2DoubleDS() {
        // we compare accurate versus naive dot product implementations
        // on regular vectors (i.e. not extreme cases like in the previous test)
        Well1024a random = new Well1024a(0xc6af886975069f11l);

        for (int i = 0; i < 10000; ++i) {
            final double[] u = new double[4];
            final DerivativeStructure[] v = new DerivativeStructure[4];
            for (int j = 0; j < u.length; ++j) {
                u[j] = 1e17 * random.nextDouble();
                v[j] = new DerivativeStructure(u.length, 1, j, 1e17 * random.nextDouble());
            }

            DerivativeStructure lin = v[0].linearCombination(u[0], v[0], u[1], v[1]);
            double ref = u[0] * v[0].getValue() +
                         u[1] * v[1].getValue();
 
View Full Code Here

    @Test
    public void testCrossProduct() {
        // we compare accurate versus naive cross product implementations
        // on regular vectors (i.e. not extreme cases like in the previous test)
        Well1024a random = new Well1024a(885362227452043214l);
        for (int i = 0; i < 10000; ++i) {
            double ux = 10000 * random.nextDouble();
            double uy = 10000 * random.nextDouble();
            double uz = 10000 * random.nextDouble();
            double vx = 10000 * random.nextDouble();
            double vy = 10000 * random.nextDouble();
            double vz = 10000 * random.nextDouble();
            Vector3D cNaive = new Vector3D(uy * vz - uz * vy, uz * vx - ux * vz, ux * vy - uy * vx);
            Vector3D cAccurate = new Vector3D(ux, uy, uz).crossProduct(new Vector3D(vx, vy, vz));
            Assert.assertEquals(0.0, cAccurate.distance(cNaive), 6.0e-15 * cAccurate.getNorm());
        }
    }
View Full Code Here

    }

    @Test
    public void testDoubleVectors() throws MathIllegalArgumentException {

        Well1024a random = new Well1024a(0x180b41cfeeffaf67l);
        UnitSphereRandomVectorGenerator g = new UnitSphereRandomVectorGenerator(3, random);
        for (int i = 0; i < 10; ++i) {
            double[] unit = g.nextVector();
            FieldRotation<DerivativeStructure> r = new FieldRotation<DerivativeStructure>(createVector(unit[0], unit[1], unit[2]),
                                          createAngle(random.nextDouble()));

            for (double x = -0.9; x < 0.9; x += 0.2) {
                for (double y = -0.9; y < 0.9; y += 0.2) {
                    for (double z = -0.9; z < 0.9; z += 0.2) {
                        FieldVector3D<DerivativeStructure> uds   = createVector(x, y, z);
View Full Code Here

    }

    @Test
    public void testDoubleRotations() throws MathIllegalArgumentException {

        Well1024a random = new Well1024a(0x180b41cfeeffaf67l);
        UnitSphereRandomVectorGenerator g = new UnitSphereRandomVectorGenerator(3, random);
        for (int i = 0; i < 10; ++i) {
            double[] unit1 = g.nextVector();
            Rotation r1 = new Rotation(new Vector3D(unit1[0], unit1[1], unit1[2]),
                                      random.nextDouble());
            FieldRotation<DerivativeStructure> r1Prime = new FieldRotation<DerivativeStructure>(new DerivativeStructure(4, 1, 0, r1.getQ0()),
                                                new DerivativeStructure(4, 1, 1, r1.getQ1()),
                                                new DerivativeStructure(4, 1, 2, r1.getQ2()),
                                                new DerivativeStructure(4, 1, 3, r1.getQ3()),
                                                false);
            double[] unit2 = g.nextVector();
            FieldRotation<DerivativeStructure> r2 = new FieldRotation<DerivativeStructure>(createVector(unit2[0], unit2[1], unit2[2]),
                                           createAngle(random.nextDouble()));

            FieldRotation<DerivativeStructure> rA = FieldRotation.applyTo(r1, r2);
            FieldRotation<DerivativeStructure> rB = r1Prime.applyTo(r2);
            FieldRotation<DerivativeStructure> rC = FieldRotation.applyInverseTo(r1, r2);
            FieldRotation<DerivativeStructure> rD = r1Prime.applyInverseTo(r2);
View Full Code Here

    @Test
    public void testDotProduct() {
        // we compare accurate versus naive dot product implementations
        // on regular vectors (i.e. not extreme cases like in the previous test)
        Well1024a random = new Well1024a(553267312521321234l);
        for (int i = 0; i < 10000; ++i) {
            double ux = 10000 * random.nextDouble();
            double uy = 10000 * random.nextDouble();
            double uz = 10000 * random.nextDouble();
            double vx = 10000 * random.nextDouble();
            double vy = 10000 * random.nextDouble();
            double vz = 10000 * random.nextDouble();
            double sNaive = ux * vx + uy * vy + uz * vz;

            FieldVector3D<DerivativeStructure> uds = createVector(ux, uy, uz, 3);
            FieldVector3D<DerivativeStructure> vds = createVector(vx, vy, vz, 3);
            Vector3D v = new Vector3D(vx, vy, vz);
View Full Code Here

TOP

Related Classes of org.apache.commons.math3.random.Well1024a

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.