Package org.apache.commons.math3.distribution

Examples of org.apache.commons.math3.distribution.UniformRealDistribution


        SiteWithPolynomial nearSite = nearestSites.get(row);
        DefaultPolynomial.populateMatrix(matrix, row, nearSite.pos.x, nearSite.pos.z);
        vector.setEntry(row, nearSite.pos.y);
      }
     
      QRDecomposition qr = new QRDecomposition(matrix);
      RealVector solution = qr.getSolver().solve(vector);
       
      double[] coeffs = solution.toArray();
     
      for (double coeff : coeffs) {
        if (coeff > 10e3) {
View Full Code Here


     * if the covariance matrix cannot be computed (singular problem).
     */
    public double[][] computeCovariances(double[] params,
                                         double threshold) {
        // Set up the Jacobian.
        final RealMatrix j = computeWeightedJacobian(params);

        // Compute transpose(J)J.
        final RealMatrix jTj = j.transpose().multiply(j);

        // Compute the covariances matrix.
        final DecompositionSolver solver
            = new QRDecomposition(jTj, threshold).getSolver();
        return solver.getInverse().getData();
View Full Code Here

     * @return the square-root of the weight matrix.
     */
    private RealMatrix squareRoot(RealMatrix m) {
        if (m instanceof DiagonalMatrix) {
            final int dim = m.getRowDimension();
            final RealMatrix sqrtM = new DiagonalMatrix(dim);
            for (int i = 0; i < dim; i++) {
                sqrtM.setEntry(i, i, FastMath.sqrt(m.getEntry(i, i)));
            }
            return sqrtM;
        } else {
            final EigenDecomposition dec = new EigenDecomposition(m);
            return dec.getSquareRoot();
View Full Code Here

     
      List<SiteWithPolynomial> nearestSites =
          nearestSiteMap.get(site);
     
      RealVector vector = new ArrayRealVector(SITES_FOR_APPROX);
      RealMatrix matrix = new Array2DRowRealMatrix(
          SITES_FOR_APPROX, DefaultPolynomial.NUM_COEFFS);
     
      for (int row = 0; row < SITES_FOR_APPROX; row++) {
        SiteWithPolynomial nearSite = nearestSites.get(row);
        DefaultPolynomial.populateMatrix(matrix, row, nearSite.pos.x, nearSite.pos.z);
View Full Code Here

    for (SiteWithPolynomial site : sites) {
     
      List<SiteWithPolynomial> nearestSites =
          nearestSiteMap.get(site);
     
      RealVector vector = new ArrayRealVector(SITES_FOR_APPROX);
      RealMatrix matrix = new Array2DRowRealMatrix(
          SITES_FOR_APPROX, DefaultPolynomial.NUM_COEFFS);
     
      for (int row = 0; row < SITES_FOR_APPROX; row++) {
        SiteWithPolynomial nearSite = nearestSites.get(row);
        DefaultPolynomial.populateMatrix(matrix, row, nearSite.pos.x, nearSite.pos.z);
        vector.setEntry(row, nearSite.pos.y);
      }
     
      QRDecomposition qr = new QRDecomposition(matrix);
      RealVector solution = qr.getSolver().solve(vector);
       
      double[] coeffs = solution.toArray();
     
      for (double coeff : coeffs) {
        if (coeff > 10e3) {
          continue calculatePolynomials;
        }
View Full Code Here

                return Double.compare(weightedResidual(o1),
                                      weightedResidual(o2));
            }

            private double weightedResidual(final PointVectorValuePair pv) {
                final RealVector v = new ArrayRealVector(pv.getValueRef(), false);
                final RealVector r = target.subtract(v);
                return r.dotProduct(weight.operate(r));
            }
        };
    }
View Full Code Here

     * {@link #DEFAULT_INVERSE_ABSOLUTE_ACCURACY}).
     * @throws NotStrictlyPositiveException if {@code mean <= 0}.
     * @since 2.1
     */
    public ExponentialDistribution(double mean, double inverseCumAccuracy) {
        this(new Well19937c(), mean, inverseCumAccuracy);
    }
View Full Code Here

        for (int i = 0; i < k; ++i) {
            sumImpl[i]     = new Sum();
            sumSqImpl[i]   = new SumOfSquares();
            minImpl[i]     = new Min();
            maxImpl[i]     = new Max();
            sumLogImpl[i= new SumOfLogs();
            geoMeanImpl[i] = new GeometricMean();
            meanImpl[i]    = new Mean();
        }

        covarianceImpl =
View Full Code Here

        geoMeanImpl = new StorelessUnivariateStatistic[k];
        meanImpl    = new StorelessUnivariateStatistic[k];

        for (int i = 0; i < k; ++i) {
            sumImpl[i]     = new Sum();
            sumSqImpl[i]   = new SumOfSquares();
            minImpl[i]     = new Min();
            maxImpl[i]     = new Max();
            sumLogImpl[i= new SumOfLogs();
            geoMeanImpl[i] = new GeometricMean();
            meanImpl[i]    = new Mean();
View Full Code Here

     * @param checker Convergence checker.
     */
    protected BaseOptimizer(ConvergenceChecker<PAIR> checker) {
        this.checker = checker;

        evaluations = new Incrementor(0, new MaxEvalCallback());
        iterations = new Incrementor(0, new MaxIterCallback());
    }
View Full Code Here

TOP

Related Classes of org.apache.commons.math3.distribution.UniformRealDistribution

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.