Package org.apache.commons.math3.analysis.polynomials

Examples of org.apache.commons.math3.analysis.polynomials.PolynomialFunction$Parametric


        UnivariateInterpolator i = new LinearInterpolator();
        UnivariateFunction f = i.interpolate(x, y);
        verifyInterpolation(f, x, y);

        // Verify coefficients using analytical values
        PolynomialFunction polynomials[] = ((PolynomialSplineFunction) f).getPolynomials();
        double target[] = {y[0], 1d};
        TestUtils.assertEquals(polynomials[0].getCoefficients(), target, coefficientTolerance);
        target = new double[]{y[1], -1d};
        TestUtils.assertEquals(polynomials[1].getCoefficients(), target, coefficientTolerance);
    }
View Full Code Here


        UnivariateFunction f = i.interpolate(x, y);
        verifyInterpolation(f, x, y);
        verifyConsistency((PolynomialSplineFunction) f, x);

        // Verify coefficients using analytical values
        PolynomialFunction polynomials[] = ((PolynomialSplineFunction) f).getPolynomials();
        double target[] = {y[0], 1d};
        TestUtils.assertEquals(polynomials[0].getCoefficients(), target, coefficientTolerance);
        target = new double[]{y[1], 1d};
        TestUtils.assertEquals(polynomials[1].getCoefficients(), target, coefficientTolerance);
View Full Code Here

        UnivariateInterpolator i = new SplineInterpolator();
        UnivariateFunction f = i.interpolate(x, y);
        verifyInterpolation(f, x, y);

        // Verify coefficients using analytical values
        PolynomialFunction polynomials[] = ((PolynomialSplineFunction) f).getPolynomials();
        double target[] = {y[0], 1d};
        TestUtils.assertEquals(polynomials[0].getCoefficients(), target, coefficientTolerance);
        target = new double[]{y[1], 1d};
        TestUtils.assertEquals(polynomials[1].getCoefficients(), target, coefficientTolerance);
        target = new double[]{y[2], 1d};
View Full Code Here

        UnivariateFunction f = i.interpolate(x, y);
        verifyInterpolation(f, x, y);
        verifyConsistency((PolynomialSplineFunction) f, x);

        // Verify coefficients using analytical values
        PolynomialFunction polynomials[] = ((PolynomialSplineFunction) f).getPolynomials();
        double target[] = {y[0], 1.5d, 0d, -2d};
        TestUtils.assertEquals(polynomials[0].getCoefficients(), target, coefficientTolerance);
        target = new double[]{y[1], 0d, -3d, 2d};
        TestUtils.assertEquals(polynomials[1].getCoefficients(), target, coefficientTolerance);
    }
View Full Code Here

         *     x[2] <- pi / 6, etc, same for y[] (could use y <- scan() for y values)
         *     g <- splinefun(x, y, "natural")
         *     splinecoef <- eval(expression(z), envir = environment(g))
         *     print(splinecoef)
         */
        PolynomialFunction polynomials[] = ((PolynomialSplineFunction) f).getPolynomials();
        double target[] = {y[0], 1.002676d, 0d, -0.17415829d};
        TestUtils.assertEquals(polynomials[0].getCoefficients(), target, coefficientTolerance);
        target = new double[]{y[1], 8.594367e-01, -2.735672e-01, -0.08707914};
        TestUtils.assertEquals(polynomials[1].getCoefficients(), target, coefficientTolerance);
        target = new double[]{y[2], 1.471804e-17,-5.471344e-01, 0.08707914};
View Full Code Here

     * Verifies that interpolating polynomials satisfy consistency requirement:
     *    adjacent polynomials must agree through two derivatives at knot points
     */
    protected void verifyConsistency(PolynomialSplineFunction f, double x[])
        {
        PolynomialFunction polynomials[] = f.getPolynomials();
        for (int i = 1; i < x.length - 2; i++) {
            // evaluate polynomials and derivatives at x[i + 1]
            Assert.assertEquals(polynomials[i].value(x[i +1] - x[i]), polynomials[i + 1].value(0), 0.1);
            Assert.assertEquals(polynomials[i].derivative().value(x[i +1] - x[i]),
                                polynomials[i + 1].derivative().value(0), 0.5);
View Full Code Here

        rng.reseedRandomGenerator(64925784252L);

        final LevenbergMarquardtOptimizer optim = new LevenbergMarquardtOptimizer();
        final PolynomialFitter fitter = new PolynomialFitter(optim);
        final double[] coeff = { 12.9, -3.4, 2.1 }; // 12.9 - 3.4 x + 2.1 x^2
        final PolynomialFunction f = new PolynomialFunction(coeff);

        // Collect data from a known polynomial.
        for (int i = 0; i < 100; i++) {
            final double x = rng.sample();
            fitter.addObservedPoint(x, f.value(x));
        }

        // Start fit from initial guesses that are far from the optimal values.
        final double[] best = fitter.fit(new double[] { -1e-20, 3e15, -5e25 });
View Full Code Here

        rng.reseedRandomGenerator(64925784252L);

        final LevenbergMarquardtOptimizer optim = new LevenbergMarquardtOptimizer();
        final PolynomialFitter fitter = new PolynomialFitter(optim);
        final double[] coeff = { 12.9, -3.4, 2.1 }; // 12.9 - 3.4 x + 2.1 x^2
        final PolynomialFunction f = new PolynomialFunction(coeff);

        // Collect data from a known polynomial.
        for (int i = 0; i < 100; i++) {
            final double x = rng.sample();
            fitter.addObservedPoint(x, f.value(x));
        }

        // Start fit from initial guesses that are far from the optimal values.
        final double[] best = fitter.fit(new double[] { -1e-20, 3e15, -5e25 });
View Full Code Here

    @Test
    public void testNoError() {
        Random randomizer = new Random(64925784252l);
        for (int degree = 1; degree < 10; ++degree) {
            PolynomialFunction p = buildRandomPolynomial(degree, randomizer);

            PolynomialFitter fitter = new PolynomialFitter(new LevenbergMarquardtOptimizer());
            for (int i = 0; i <= degree; ++i) {
                fitter.addObservedPoint(1.0, i, p.value(i));
            }

            final double[] init = new double[degree + 1];
            PolynomialFunction fitted = new PolynomialFunction(fitter.fit(init));

            for (double x = -1.0; x < 1.0; x += 0.01) {
                double error = FastMath.abs(p.value(x) - fitted.value(x)) /
                               (1.0 + FastMath.abs(p.value(x)));
                Assert.assertEquals(0.0, error, 1.0e-6);
            }
        }
    }
View Full Code Here

    @Test
    public void testNoError() {
        Random randomizer = new Random(64925784252l);
        for (int degree = 1; degree < 10; ++degree) {
            PolynomialFunction p = buildRandomPolynomial(degree, randomizer);

            PolynomialFitter fitter = new PolynomialFitter(new LevenbergMarquardtOptimizer());
            for (int i = 0; i <= degree; ++i) {
                fitter.addObservedPoint(1.0, i, p.value(i));
            }

            final double[] init = new double[degree + 1];
            PolynomialFunction fitted = new PolynomialFunction(fitter.fit(init));

            for (double x = -1.0; x < 1.0; x += 0.01) {
                double error = FastMath.abs(p.value(x) - fitted.value(x)) /
                               (1.0 + FastMath.abs(p.value(x)));
                Assert.assertEquals(0.0, error, 1.0e-6);
            }
        }
    }
View Full Code Here

TOP

Related Classes of org.apache.commons.math3.analysis.polynomials.PolynomialFunction$Parametric

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.