Package org.apache.commons.math3.analysis

Examples of org.apache.commons.math3.analysis.SinFunction


    @Test
    public void testSinZero() {
        // The sinus function is behaved well around the root at pi. The second
        // order derivative is zero, which means linar approximating methods will
        // still converge quadratically.
        UnivariateFunction f = new SinFunction();
        double result;
        UnivariateSolver solver = new BrentSolver();
        // Somewhat benign interval. The function is monotone.
        result = solver.solve(100, f, 3, 4);
        // System.out.println(
View Full Code Here


        }
    }

    @Test
    public void testRootEndpoints() {
        UnivariateFunction f = new SinFunction();
        BrentSolver solver = new BrentSolver();

        // endpoint is root
        double result = solver.solve(100, f, FastMath.PI, 4);
        Assert.assertEquals(FastMath.PI, result, solver.getAbsoluteAccuracy());
View Full Code Here

        Assert.assertEquals(FastMath.PI, result, solver.getAbsoluteAccuracy());
    }

    @Test
    public void testBadEndpoints() {
        UnivariateFunction f = new SinFunction();
        BrentSolver solver = new BrentSolver();
        try // bad interval
            solver.solve(100, f, 1, -1);
            Assert.fail("Expecting NumberIsTooLargeException - bad interval");
        } catch (NumberIsTooLargeException ex) {
View Full Code Here

    /**
     * Test of solver for the sine function.
     */
    @Test
    public void testSinFunction() {
        UnivariateFunction f = new SinFunction();
        UnivariateSolver solver = new MullerSolver();
        double min, max, expected, result, tolerance;

        min = 3.0; max = 4.0; expected = FastMath.PI;
        tolerance = FastMath.max(solver.getAbsoluteAccuracy(),
View Full Code Here

    /**
     * Test of parameters for the solver.
     */
    @Test
    public void testParameters() throws Exception {
        UnivariateFunction f = new SinFunction();
        UnivariateSolver solver = new MullerSolver();

        try {
            // bad interval
            double root = solver.solve(100, f, 1, -1);
View Full Code Here

                return false;
            }
            final int    n = FastMath.max(1, (int) FastMath.ceil(FastMath.abs(dt) / maxCheckInterval));
            final double h = dt / n;

            final UnivariateFunction f = new UnivariateFunction() {
                public double value(final double t) throws LocalMaxCountExceededException {
                    try {
                        interpolator.setInterpolatedTime(t);
                        return handler.g(t, getCompleteState(interpolator));
                    } catch (MaxCountExceededException mcee) {
                        throw new LocalMaxCountExceededException(mcee);
                    }
                }
            };

            double ta = t0;
            double ga = g0;
            for (int i = 0; i < n; ++i) {

                // evaluate handler value at the end of the substep
                final double tb = t0 + (i + 1) * h;
                interpolator.setInterpolatedTime(tb);
                final double gb = handler.g(tb, getCompleteState(interpolator));

                // check events occurrence
                if (g0Positive ^ (gb >= 0)) {
                    // there is a sign change: an event is expected during this step

                    // variation direction, with respect to the integration direction
                    increasing = gb >= ga;

                    // find the event time making sure we select a solution just at or past the exact root
                    final double root;
                    if (solver instanceof BracketedUnivariateSolver<?>) {
                        @SuppressWarnings("unchecked")
                        BracketedUnivariateSolver<UnivariateFunction> bracketing =
                                (BracketedUnivariateSolver<UnivariateFunction>) solver;
                        root = forward ?
                               bracketing.solve(maxIterationCount, f, ta, tb, AllowedSolution.RIGHT_SIDE) :
                               bracketing.solve(maxIterationCount, f, tb, ta, AllowedSolution.LEFT_SIDE);
                    } else {
                        final double baseRoot = forward ?
                                                solver.solve(maxIterationCount, f, ta, tb) :
                                                solver.solve(maxIterationCount, f, tb, ta);
                        final int remainingEval = maxIterationCount - solver.getEvaluations();
                        BracketedUnivariateSolver<UnivariateFunction> bracketing =
                                new PegasusSolver(solver.getRelativeAccuracy(), solver.getAbsoluteAccuracy());
                        root = forward ?
                               UnivariateSolverUtils.forceSide(remainingEval, f, bracketing,
                                                                   baseRoot, ta, tb, AllowedSolution.RIGHT_SIDE) :
                               UnivariateSolverUtils.forceSide(remainingEval, f, bracketing,
                                                                   baseRoot, tb, ta, AllowedSolution.LEFT_SIDE);
                    }

                    if ((!Double.isNaN(previousEventTime)) &&
                        (FastMath.abs(root - ta) <= convergence) &&
                        (FastMath.abs(root - previousEventTime) <= convergence)) {
                        // we have either found nothing or found (again ?) a past event,
                        // retry the substep excluding this value, and taking care to have the
                        // required sign in case the g function is noisy around its zero and
                        // crosses the axis several times
                        do {
                            ta = forward ? ta + convergence : ta - convergence;
                            ga = f.value(ta);
                        } while ((g0Positive ^ (ga >= 0)) && (forward ^ (ta >= tb)));
                        --i;
                    } else if (Double.isNaN(previousEventTime) ||
                               (FastMath.abs(previousEventTime - root) > convergence)) {
                        pendingEventTime = root;
View Full Code Here

                        final double baseRoot = forward ?
                                                solver.solve(maxIterationCount, f, ta, tb) :
                                                solver.solve(maxIterationCount, f, tb, ta);
                        final int remainingEval = maxIterationCount - solver.getEvaluations();
                        BracketedUnivariateSolver<UnivariateFunction> bracketing =
                                new PegasusSolver(solver.getRelativeAccuracy(), solver.getAbsoluteAccuracy());
                        root = forward ?
                               UnivariateSolverUtils.forceSide(remainingEval, f, bracketing,
                                                                   baseRoot, ta, tb, AllowedSolution.RIGHT_SIDE) :
                               UnivariateSolverUtils.forceSide(remainingEval, f, bracketing,
                                                                   baseRoot, tb, ta, AllowedSolution.LEFT_SIDE);
View Full Code Here

     * length.
     */
    protected double[] computeResiduals(double[] objectiveValue) {
        final double[] target = getTarget();
        if (objectiveValue.length != target.length) {
            throw new DimensionMismatchException(target.length,
                                                 objectiveValue.length);
        }

        final double[] residuals = new double[target.length];
        for (int i = 0; i < target.length; i++) {
View Full Code Here

        /** {@inheritDoc} */
        public RealVector solve(final RealVector b) {
            final int m = lTData.length;
            if (b.getDimension() != m) {
                throw new DimensionMismatchException(b.getDimension(), m);
            }

            final double[] x = b.toArray();

            // Solve LY = b
View Full Code Here

        /** {@inheritDoc} */
        public RealMatrix solve(RealMatrix b) {
            final int m = lTData.length;
            if (b.getRowDimension() != m) {
                throw new DimensionMismatchException(b.getRowDimension(), m);
            }

            final int nColB = b.getColumnDimension();
            final double[][] x = b.getData();

View Full Code Here

TOP

Related Classes of org.apache.commons.math3.analysis.SinFunction

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.