Package org.apache.commons.math.linear

Examples of org.apache.commons.math.linear.RealVector$Entry


     *
     * @return residual sum of squares
     * @since 2.2
     */
    public double calculateResidualSumOfSquares() {
        final RealVector residuals = calculateResiduals();
        return residuals.dotProduct(residuals);
    }
View Full Code Here


     * @return error variance
     * @since 2.2
     */
    @Override
    protected double calculateErrorVariance() {
        RealVector residuals = calculateResiduals();
        double t = residuals.dotProduct(getOmegaInverse().operate(residuals));
        return t / (X.getRowDimension() - X.getColumnDimension());

    }
View Full Code Here

        double previous = Double.POSITIVE_INFINITY;
        do {

            // build the linear problem
            incrementJacobianEvaluationsCounter();
            RealVector b = new ArrayRealVector(parameters.length);
            RealMatrix a = MatrixUtils.createRealMatrix(parameters.length, parameters.length);
            for (int i = 0; i < measurements.length; ++i) {
                if (! measurements [i].isIgnored()) {

                    double weight   = measurements[i].getWeight();
                    double residual = measurements[i].getResidual();

                    // compute the normal equation
                    for (int j = 0; j < parameters.length; ++j) {
                        grad[j] = measurements[i].getPartial(parameters[j]);
                        bDecrementData[j] = weight * residual * grad[j];
                    }

                    // build the contribution matrix for measurement i
                    for (int k = 0; k < parameters.length; ++k) {
                        double gk = grad[k];
                        for (int l = 0; l < parameters.length; ++l) {
                            wGradGradT.setEntry(k, l, weight * gk * grad[l]);
                        }
                    }

                    // update the matrices
                    a = a.add(wGradGradT);
                    b = b.add(bDecrement);

                }
            }

            try {

                // solve the linearized least squares problem
                RealVector dX = new LUDecompositionImpl(a).getSolver().solve(b);

                // update the estimated parameters
                for (int i = 0; i < parameters.length; ++i) {
                    parameters[i].setEstimate(parameters[i].getEstimate() + dX.getEntry(i));
                }

            } catch(InvalidMatrixException e) {
                throw new EstimationException(LocalizedFormats.UNABLE_TO_SOLVE_SINGULAR_PROBLEM);
            }
View Full Code Here

     * @param point Interpolation point.
     * @return the interpolated value.
     */
    public double value(double[] point) {

        final RealVector p = new ArrayRealVector(point);

        // Reset.
        for (MicrosphereSurfaceElement md : microsphere) {
            md.reset();
        }

        // Compute contribution of each sample points to the microsphere elements illumination
        for (Map.Entry<RealVector, Double> sd : samples.entrySet()) {

            // Vector between interpolation point and current sample point.
            final RealVector diff = sd.getKey().subtract(p);
            final double diffNorm = diff.getNorm();

            if (FastMath.abs(diffNorm) < FastMath.ulp(1d)) {
                // No need to interpolate, as the interpolation point is
                // actually (very close to) one of the sampled points.
                return sd.getValue();
View Full Code Here

    /** test eigenvectors */
    public void testEigenvectors() {
        EigenDecomposition ed = new EigenDecompositionImpl(matrix, MathUtils.SAFE_MIN);
        for (int i = 0; i < matrix.getRowDimension(); ++i) {
            double lambda = ed.getRealEigenvalue(i);
            RealVector v  = ed.getEigenvector(i);
            RealVector mV = matrix.operate(v);
            assertEquals(0, mV.subtract(v.mapMultiplyToSelf(lambda)).getNorm(), 1.0e-13);
        }
    }
View Full Code Here

        if (getNumObjectiveFunctions() == 2) {
            matrix.setEntry(0, 0, -1);
        }
        int zIndex = (getNumObjectiveFunctions() == 1) ? 0 : 1;
        matrix.setEntry(zIndex, zIndex, maximize ? 1 : -1);
        RealVector objectiveCoefficients =
            maximize ? f.getCoefficients().mapMultiply(-1) : f.getCoefficients();
        copyArray(objectiveCoefficients.getData(), matrix.getDataRef()[zIndex]);
        matrix.setEntry(zIndex, width - 1,
            maximize ? f.getConstantTerm() : -1 * f.getConstantTerm());

        if (!restrictToNonNegative) {
            matrix.setEntry(zIndex, getSlackVariableOffset() - 1,
View Full Code Here

        };
        double[][] covariance = MatrixUtils.createRealIdentityMatrix(4).scalarMultiply(2).getData();
        GLSMultipleLinearRegression regression = new GLSMultipleLinearRegression();
        regression.newSampleData(y, x, covariance);
        RealMatrix combinedX = regression.X.copy();
        RealVector combinedY = regression.Y.copy();
        RealMatrix combinedCovInv = regression.getOmegaInverse();
        regression.newXSampleData(x);
        regression.newYSampleData(y);
        assertEquals(combinedX, regression.X);
        assertEquals(combinedY, regression.Y);
View Full Code Here

        // and Longley OLS beta vector as "true" beta.  Generate
        // Y values by XB + u where u is a CorrelatedRandomVector generated
        // from cov.
        OLSMultipleLinearRegression ols = new OLSMultipleLinearRegression();
        ols.newSampleData(longley, nObs, 6);
        final RealVector b = ols.calculateBeta().copy();
        final RealMatrix x = ols.X.copy();
       
        // Create a GLS model to reuse
        GLSMultipleLinearRegression gls = new GLSMultipleLinearRegression();
        gls.newSampleData(longley, nObs, 6);
        gls.newCovarianceData(cov.getData());
       
        // Create aggregators for stats measuring model performance
        DescriptiveStatistics olsBetaStats = new DescriptiveStatistics();
        DescriptiveStatistics glsBetaStats = new DescriptiveStatistics();
       
        // Generate Y vectors for 10000 models, estimate GLS and OLS and
        // Verify that OLS estimates are better
        final int nModels = 10000;
        for (int i = 0; i < nModels; i++) {
           
            // Generate y = xb + u with u cov
            RealVector u = MatrixUtils.createRealVector(gen.nextVector());
            double[] y = u.add(x.operate(b)).getData();
           
            // Estimate OLS parameters
            ols.newYSampleData(y);
            RealVector olsBeta = ols.calculateBeta();
           
            // Estimate GLS parameters
            gls.newYSampleData(y);
            RealVector glsBeta = gls.calculateBeta();
           
            // Record deviations from "true" beta
            double dist = olsBeta.getDistance(b);
            olsBetaStats.addValue(dist * dist);
            dist = glsBeta.getDistance(b);
            glsBetaStats.addValue(dist * dist);
           
        }
       
        // Verify that GLS is on average more efficient, lower variance
View Full Code Here

          {27, 37, 47}  
        };
        OLSMultipleLinearRegression regression = new OLSMultipleLinearRegression();
        regression.newSampleData(y, x);
        RealMatrix combinedX = regression.X.copy();
        RealVector combinedY = regression.Y.copy();
        regression.newXSampleData(x);
        regression.newYSampleData(y);
        assertEquals(combinedX, regression.X);
        assertEquals(combinedY, regression.Y);
       
View Full Code Here

          {27, 37, 47}  
        };
        AbstractMultipleLinearRegression regression = createRegression();
        regression.newSampleData(design, 4, 3);
        RealMatrix flatX = regression.X.copy();
        RealVector flatY = regression.Y.copy();
        regression.newXSampleData(x);
        regression.newYSampleData(y);
        assertEquals(flatX, regression.X);
        assertEquals(flatY, regression.Y);
       
View Full Code Here

TOP

Related Classes of org.apache.commons.math.linear.RealVector$Entry

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.