Package org.apache.commons.math.linear

Examples of org.apache.commons.math.linear.BlockRealMatrix


     * @param matrix matrix with columns representing variables to correlate
     * @return correlation matrix
     */
    public RealMatrix computeCorrelationMatrix(RealMatrix matrix) {
        int nVars = matrix.getColumnDimension();
        RealMatrix outMatrix = new BlockRealMatrix(nVars, nVars);
        for (int i = 0; i < nVars; i++) {
            for (int j = 0; j < i; j++) {
              double corr = correlation(matrix.getColumn(i), matrix.getColumn(j));
              outMatrix.setEntry(i, j, corr);
              outMatrix.setEntry(j, i, corr);
            }
            outMatrix.setEntry(i, i, 1d);
        }
        return outMatrix;
    }
View Full Code Here


     *
     * @param data matrix with columns representing variables to correlate
     * @return correlation matrix
     */
    public RealMatrix computeCorrelationMatrix(double[][] data) {
       return computeCorrelationMatrix(new BlockRealMatrix(data));
    }
View Full Code Here

     * @param covarianceMatrix the covariance matrix
     * @return correlation matrix
     */
    public RealMatrix covarianceToCorrelation(RealMatrix covarianceMatrix) {
        int nVars = covarianceMatrix.getColumnDimension();
        RealMatrix outMatrix = new BlockRealMatrix(nVars, nVars);
        for (int i = 0; i < nVars; i++) {
            double sigma = Math.sqrt(covarianceMatrix.getEntry(i, i));
            outMatrix.setEntry(i, i, 1d);
            for (int j = 0; j < i; j++) {
                double entry = covarianceMatrix.getEntry(i, j) /
                       (sigma * Math.sqrt(covarianceMatrix.getEntry(j, j)));
                outMatrix.setEntry(i, j, entry);
                outMatrix.setEntry(j, i, entry);
            }
        }
        return outMatrix;
    }
View Full Code Here

        private static final long serialVersionUID = 703247177355019415L;
        final RealMatrix factors;
        final double[] target;
        public LinearProblem(double[][] factors, double[] target) {
            this.factors = new BlockRealMatrix(factors);
            this.target  = target;
        }
View Full Code Here

            }

            try {

                // solve the linearized least squares problem
                RealMatrix mA = new BlockRealMatrix(a);
                DecompositionSolver solver = useLU ?
                        new LUDecompositionImpl(mA).getSolver() :
                        new QRDecompositionImpl(mA).getSolver();
                final double[] dX = solver.solve(b);
View Full Code Here

            new PearsonsCorrelation().correlation(one, two);
            fail("Expecting IllegalArgumentException");
        } catch (IllegalArgumentException ex) {
            // Expected
        }
        RealMatrix matrix = new BlockRealMatrix(new double[][] {{0},{1}});
        try {
            new PearsonsCorrelation(matrix);
            fail("Expecting IllegalArgumentException");
        } catch (IllegalArgumentException ex) {
            // Expected
View Full Code Here

        int ptr = 0;
        for (int i = 0; i < nRows; i++) {
            System.arraycopy(data, ptr, matrixData[i], 0, nCols);
            ptr += nCols;
        }
        return new BlockRealMatrix(matrixData);
    }
View Full Code Here

        return new BlockRealMatrix(matrixData);
    }
   
    protected RealMatrix createLowerTriangularRealMatrix(double[] data, int dimension) {
        int ptr = 0;
        RealMatrix result = new BlockRealMatrix(dimension, dimension);
        for (int i = 1; i < dimension; i++) {
            for (int j = 0; j < i; j++) {
                result.setEntry(i, j, data[ptr]);
                ptr++;
            }
        }
        return result;
    }
View Full Code Here

            new SpearmansCorrelation().correlation(one, two);
            fail("Expecting IllegalArgumentException");
        } catch (IllegalArgumentException ex) {
            // Expected
        }
        RealMatrix matrix = new BlockRealMatrix(new double[][] {{0},{1}});
        try {
            new SpearmansCorrelation(matrix);
            fail("Expecting IllegalArgumentException");
        } catch (IllegalArgumentException ex) {
            // Expected
View Full Code Here

     * @param biasCorrected true means covariances are bias-corrected
     * @throws IllegalArgumentException if the input data array is not
     * rectangular with at least two rows and two columns.
     */
    public Covariance(double[][] data, boolean biasCorrected) {
        this(new BlockRealMatrix(data), biasCorrected);
    }
View Full Code Here

TOP

Related Classes of org.apache.commons.math.linear.BlockRealMatrix

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.