Package org.apache.commons.math.linear

Examples of org.apache.commons.math.linear.Array2DRowRealMatrix


  @Test
  public void testLeastSquares2()
  throws FunctionEvaluationException, ConvergenceException {

      final RealMatrix factors =
          new Array2DRowRealMatrix(new double[][] {
              { 1.0, 0.0 },
              { 0.0, 1.0 }
          }, false);
      LeastSquaresConverter ls = new LeastSquaresConverter(new MultivariateVectorialFunction() {
          public double[] value(double[] variables) {
              return factors.operate(variables);
          }
      }, new double[] { 2.0, -3.0 }, new double[] { 10.0, 0.1 });
      NelderMead optimizer = new NelderMead();
      optimizer.setConvergenceChecker(new SimpleScalarValueChecker(-1.0, 1.0e-6));
      optimizer.setMaxIterations(200);
View Full Code Here


  @Test
  public void testLeastSquares3()
  throws FunctionEvaluationException, ConvergenceException {

      final RealMatrix factors =
          new Array2DRowRealMatrix(new double[][] {
              { 1.0, 0.0 },
              { 0.0, 1.0 }
          }, false);
      LeastSquaresConverter ls = new LeastSquaresConverter(new MultivariateVectorialFunction() {
          public double[] value(double[] variables) {
              return factors.operate(variables);
          }
      }, new double[] { 2.0, -3.0 }, new Array2DRowRealMatrix(new double [][] {
          { 1.0, 1.2 }, { 1.2, 2.0 }
      }));
      NelderMead optimizer = new NelderMead();
      optimizer.setConvergenceChecker(new SimpleScalarValueChecker(-1.0, 1.0e-6));
      optimizer.setMaxIterations(200);
View Full Code Here

  @Test
  public void testLeastSquares1()
  throws FunctionEvaluationException, ConvergenceException {

      final RealMatrix factors =
          new Array2DRowRealMatrix(new double[][] {
              { 1.0, 0.0 },
              { 0.0, 1.0 }
          }, false);
      LeastSquaresConverter ls = new LeastSquaresConverter(new MultivariateVectorialFunction() {
          public double[] value(double[] variables) {
              return factors.operate(variables);
          }
      }, new double[] { 2.0, -3.0 });
      NelderMead optimizer = new NelderMead();
      optimizer.setConvergenceChecker(new SimpleScalarValueChecker(-1.0, 1.0e-6));
      optimizer.setMaxIterations(200);
View Full Code Here

  @Test
  public void testLeastSquares2()
  throws FunctionEvaluationException, ConvergenceException {

      final RealMatrix factors =
          new Array2DRowRealMatrix(new double[][] {
              { 1.0, 0.0 },
              { 0.0, 1.0 }
          }, false);
      LeastSquaresConverter ls = new LeastSquaresConverter(new MultivariateVectorialFunction() {
          public double[] value(double[] variables) {
              return factors.operate(variables);
          }
      }, new double[] { 2.0, -3.0 }, new double[] { 10.0, 0.1 });
      NelderMead optimizer = new NelderMead();
      optimizer.setConvergenceChecker(new SimpleScalarValueChecker(-1.0, 1.0e-6));
      optimizer.setMaxIterations(200);
View Full Code Here

  @Test
  public void testLeastSquares3()
  throws FunctionEvaluationException, ConvergenceException {

      final RealMatrix factors =
          new Array2DRowRealMatrix(new double[][] {
              { 1.0, 0.0 },
              { 0.0, 1.0 }
          }, false);
      LeastSquaresConverter ls = new LeastSquaresConverter(new MultivariateVectorialFunction() {
          public double[] value(double[] variables) {
              return factors.operate(variables);
          }
      }, new double[] { 2.0, -3.0 }, new Array2DRowRealMatrix(new double [][] {
          { 1.0, 1.2 }, { 1.2, 2.0 }
      }));
      NelderMead optimizer = new NelderMead();
      optimizer.setConvergenceChecker(new SimpleScalarValueChecker(-1.0, 1.0e-6));
      optimizer.setMaxIterations(200);
View Full Code Here

            x[i][0] = 1.0d;
            for (int j = 1; j < nvars + 1; j++) {
                x[i][j] = data[pointer++];
            }
        }
        this.X = new Array2DRowRealMatrix(x);
        this.Y = new ArrayRealVector(y);
    }
View Full Code Here

     * Loads new x sample data, overriding any previous sample
     *
     * @param x the [n,k] array representing the x sample
     */
    protected void newXSampleData(double[][] x) {
        this.X = new Array2DRowRealMatrix(x);
    }
View Full Code Here

                // update Nordsieck vector
                final double[] predictedScaled = new double[y0.length];
                for (int j = 0; j < y0.length; ++j) {
                    predictedScaled[j] = stepSize * yDot[j];
                }
                final Array2DRowRealMatrix nordsieckTmp = updateHighOrderDerivativesPhase1(nordsieck);
                updateHighOrderDerivativesPhase2(scaled, predictedScaled, nordsieckTmp);

                // apply correction (C in the PECE sequence)
                error = nordsieckTmp.walkInOptimizedOrder(new Corrector(y, predictedScaled, yTmp));

                if (error <= 1.0) {

                    // evaluate a final estimate of the derivative (second E in the PECE sequence)
                    computeDerivatives(stepEnd, yTmp, yDot);
View Full Code Here

            final double[] msI = multistep[i];
            for (int j = 0; j < first.length; ++j) {
                msI[j] -= first[j];
            }
        }
        return initialization.multiply(new Array2DRowRealMatrix(multistep, false));
    }
View Full Code Here

                    // update Nordsieck vector
                    final double[] predictedScaled = new double[y0.length];
                    for (int j = 0; j < y0.length; ++j) {
                        predictedScaled[j] = stepSize * yDot[j];
                    }
                    final Array2DRowRealMatrix nordsieckTmp = updateHighOrderDerivativesPhase1(nordsieck);
                    updateHighOrderDerivativesPhase2(scaled, predictedScaled, nordsieckTmp);

                    // discrete events handling
                    interpolatorTmp.reinitialize(stepEnd, stepSize, predictedScaled, nordsieckTmp);
                    interpolatorTmp.storeTime(stepStart);
View Full Code Here

TOP

Related Classes of org.apache.commons.math.linear.Array2DRowRealMatrix

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.