Package opennlp.tools.postag

Examples of opennlp.tools.postag.POSModel$POSDictionarySerializer


        new File(modelDir,"en-chunker.bin"));
    ChunkerModel chunkerModel = new ChunkerModel(chunkerStream);
    ChunkerME chunker = new ChunkerME(chunkerModel);
    FileInputStream posStream = new FileInputStream(
        new File(modelDir,"en-pos-maxent.bin"));
    POSModel posModel = new POSModel(posStream);
    POSTaggerME tagger =  new POSTaggerME(posModel);
    Parser parser = new ChunkParser(chunker, tagger);
    Parse[] results = ParserTool.parseLine("Who is the president of egypt ?", parser, 1);
    String[] context = atcg.getContext(results[0]);
    List<String> features = Arrays.asList(context);
View Full Code Here


            new File(modelDir,"en-chunker.bin"));
    ChunkerModel chunkerModel = new ChunkerModel(chunkerStream);
    ChunkerME chunker = new ChunkerME(chunkerModel);
    InputStream posStream = new FileInputStream(
            new File(modelDir,"en-pos-maxent.bin"));
    POSModel posModel = new POSModel(posStream);
    POSTaggerME tagger =  new POSTaggerME(posModel);
    Parser parser = new ChunkParser(chunker, tagger);
    //<start id="att.answerTypeDemo"/>
    AnswerTypeContextGenerator atcg =
            new AnswerTypeContextGenerator(
View Full Code Here

    //<start id="opennlpPOS"/>
    File posModelFile = new File( //<co id="opennlpPOS.co.tagger"/>
        getModelDir(), "en-pos-maxent.bin");
    FileInputStream posModelStream = new FileInputStream(posModelFile);
    POSModel model = new POSModel(posModelStream);
   
    POSTaggerME tagger = new POSTaggerME(model);
    String[] words = SimpleTokenizer.INSTANCE.tokenize( //<co id="opennlpPOS.co.tokenize"/>
        "The quick, red fox jumped over the lazy, brown dogs.");
    String[] result = tagger.tag(words);//<co id="opennlpPOS.co.dotag"/>
View Full Code Here

        new File(modelDir,"en-chunker.bin"));
    ChunkerModel chunkerModel = new ChunkerModel(chunkerStream);
    ChunkerME chunker = new ChunkerME(chunkerModel);
    FileInputStream posStream = new FileInputStream(
        new File(modelDir,"en-pos-maxent.bin"));
    POSModel posModel = new POSModel(posStream);
    POSTaggerME tagger =  new POSTaggerME(posModel);
    Parser parser = new ChunkParser(chunker, tagger);
    Parse[] results = ParserTool.parseLine("The Minnesota Twins , " +
            "the 1991 World Series Champions , are currently in third place .",
            parser, 1);
View Full Code Here

            new File(modelsDir,"en-chunker.bin"));
        ChunkerModel chunkerModel = new ChunkerModel(chunkerStream);
        chunker = new ChunkerME(chunkerModel); //<co id="qqpp.chunker"/>
        InputStream posStream = new FileInputStream(
            new File(modelsDir,"en-pos-maxent.bin"));
        POSModel posModel = new POSModel(posStream);
        tagger =  new POSTaggerME(posModel); //<co id="qqpp.tagger"/>
        model = new DoccatModel(new FileInputStream( //<co id="qqpp.theModel"/>
            new File(modelDirectory,"en-answer.bin")))
            .getChunkerModel();
        probs = new double[model.getNumOutcomes()];
View Full Code Here

        new File(modelsDir,"en-chunker.bin"));
    ChunkerModel chunkerModel = new ChunkerModel(chunkerStream);
    ChunkerME chunker = new ChunkerME(chunkerModel);
    InputStream posStream = new FileInputStream(
        new File(modelsDir,"en-pos-maxent.bin"));
    POSModel posModel = new POSModel(posStream);
    POSTaggerME tagger =  new POSTaggerME(posModel);
    Parser parser = new ChunkParser(chunker, tagger);
    AnswerTypeContextGenerator actg = new AnswerTypeContextGenerator(new File(wordnetDir));
    //<start id="atc.train"/>
    AnswerTypeEventStream es = new AnswerTypeEventStream(trainFile,
View Full Code Here

        new File(modelsDir,"en-chunker.bin"));
    ChunkerModel chunkerModel = new ChunkerModel(chunkerStream);
    ChunkerME chunker = new ChunkerME(chunkerModel);
    InputStream posStream = new FileInputStream(
        new File(modelsDir,"en-pos-maxent.bin"));
    POSModel posModel = new POSModel(posStream);
    POSTaggerME tagger =  new POSTaggerME(posModel);
    Parser parser = new ChunkParser(chunker, tagger);
    AnswerTypeContextGenerator actg = new AnswerTypeContextGenerator(wordnetDir);
    EventStream es = new AnswerTypeEventStream(eventFile,actg,parser);
    while(es.hasNext()) {
View Full Code Here

  public void collectionProcessComplete(ProcessTrace trace)
      throws ResourceProcessException, IOException {
   
    GIS.PRINT_MESSAGES = false;

    POSModel posTaggerModel = POSTaggerME.train(language,
        ObjectStreamUtils.createObjectStream(mPOSSamples),
        ModelType.MAXENT, tagDictionary, null, 100, 5);
   
    // dereference to allow garbage collection
    mPOSSamples = null;
View Full Code Here

    if (this.logger.isLoggable(Level.INFO)) {
      this.logger.log(Level.INFO, "Initializing the OpenNLP "
          + "Part of Speech annotator.");
    }

    POSModel model;

    try {
      POSModelResource modelResource = (POSModelResource) context
          .getResourceObject(UimaUtil.MODEL_PARAMETER);
View Full Code Here

    return model;
  }

  @Override
  protected POSModel loadModel(InputStream in) throws IOException {
    return new POSModel(in);
  }
View Full Code Here

TOP

Related Classes of opennlp.tools.postag.POSModel$POSDictionarySerializer

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.