Package opennlp.tools.ngram

Examples of opennlp.tools.ngram.NGramModel


    this(2, 5);
  }

  public void createFeatures(List<String> features, String[] tokens, int index, String[] preds) {

    NGramModel model = new NGramModel();
    model.add(tokens[index], minLength, maxLength);

    for (StringList tokenList : model) {

      if (tokenList.size() > 0) {
        features.add("ng=" + StringUtil.toLowerCase(tokenList.getToken(0)));
View Full Code Here


   * @param cutoff The minimum number of entries required for the n-gram to be saved as part of the dictionary.
   * @return A dictionary object.
   */
  public static Dictionary buildDictionary(ObjectStream<Parse> data, HeadRules rules, int cutoff)
      throws IOException {
    NGramModel mdict = new NGramModel();
    Parse p;
    while((p = data.read()) != null) {
      p.updateHeads(rules);
      Parse[] pwords = p.getTagNodes();
      String[] words = new String[pwords.length];
      //add all uni-grams
      for (int wi=0;wi<words.length;wi++) {
        words[wi] = pwords[wi].toString();
      }

      mdict.add(new StringList(words), 1, 1);
      //add tri-grams and bi-grams for inital sequence
      Parse[] chunks = collapsePunctuation(ParserEventStream.getInitialChunks(p),rules.getPunctuationTags());
      String[] cwords = new String[chunks.length];
      for (int wi=0;wi<cwords.length;wi++) {
        cwords[wi] = chunks[wi].getHead().toString();
      }
      mdict.add(new StringList(cwords), 2, 3);

      //emulate reductions to produce additional n-grams
      int ci = 0;
      while (ci < chunks.length) {
        //System.err.println("chunks["+ci+"]="+chunks[ci].getHead().toString()+" chunks.length="+chunks.length);
        if (lastChild(chunks[ci], chunks[ci].getParent(),rules.getPunctuationTags())) {
          //perform reduce
          int reduceStart = ci;
          while (reduceStart >=0 && chunks[reduceStart].getParent() == chunks[ci].getParent()) {
            reduceStart--;
          }
          reduceStart++;
          chunks = ParserEventStream.reduceChunks(chunks,ci,chunks[ci].getParent());
          ci = reduceStart;
          if (chunks.length != 0) {
            String[] window = new String[5];
            int wi = 0;
            if (ci-2 >= 0) window[wi++] = chunks[ci-2].getHead().toString();
            if (ci-1 >= 0) window[wi++] = chunks[ci-1].getHead().toString();
            window[wi++] = chunks[ci].getHead().toString();
            if (ci+1 < chunks.length) window[wi++] = chunks[ci+1].getHead().toString();
            if (ci+2 < chunks.length) window[wi++] = chunks[ci+2].getHead().toString();
            if (wi < 5) {
              String[] subWindow = new String[wi];
              for (int swi=0;swi<wi;swi++) {
                subWindow[swi]=window[swi];
              }
              window = subWindow;
            }
            if (window.length >=3) {
              mdict.add(new StringList(window), 2, 3);
            }
            else if (window.length == 2) {
              mdict.add(new StringList(window), 2, 2);
            }
          }
          ci=reduceStart-1; //ci will be incremented at end of loop
        }
        ci++;
      }
    }
    //System.err.println("gas,and="+mdict.getCount((new TokenList(new String[] {"gas","and"}))));
    mdict.cutoff(cutoff, Integer.MAX_VALUE);
    return mdict.toDictionary(true);
  }
View Full Code Here

TOP

Related Classes of opennlp.tools.ngram.NGramModel

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.