Package opennlp.model

Examples of opennlp.model.RealValueFileEventStream


  }

  @Test
  public void testGradientAtInitialPoint() throws IOException {
    // given
    RealValueFileEventStream rvfes1 = new RealValueFileEventStream("src/test/resources/data/opennlp/maxent/real-valued-weights-training-data.txt", "UTF-8");
    DataIndexer testDataIndexer = new OnePassRealValueDataIndexer(rvfes1,1);
    LogLikelihoodFunction objectFunction = new LogLikelihoodFunction(testDataIndexer);
    // when
    double[] gradientAtInitialPoint = objectFunction.gradientAt(objectFunction.getInitialPoint());
    double[] expectedGradient = new double[] { -9, -14, -17, 20, 8.5, 9, 14, 17, -20, -8.5 };
View Full Code Here


  }

  @Test
  public void testGradientAtNonInitialPoint() throws IOException {
    // given
    RealValueFileEventStream rvfes1 = new RealValueFileEventStream("src/test/resources/data/opennlp/maxent/real-valued-weights-training-data.txt", "UTF-8");
    DataIndexer testDataIndexer = new OnePassRealValueDataIndexer(rvfes1,1);
    LogLikelihoodFunction objectFunction = new LogLikelihoodFunction(testDataIndexer);
    // when
    double[] nonInitialPoint = new double[] { 0.2, 0.5, 0.2, 0.5, 0.2,
        0.5, 0.2, 0.5, 0.2, 0.5 };
View Full Code Here

public class QNTrainerTest {
  @Test
  public void testTrainModelReturnsAQNModel() throws Exception {
    // given
    RealValueFileEventStream rvfes1 = new RealValueFileEventStream("src/test/resources/data/opennlp/maxent/real-valued-weights-training-data.txt")
    DataIndexer testDataIndexer = new OnePassRealValueDataIndexer(rvfes1,1);
    // when
    QNModel trainedModel = new QNTrainer(false).trainModel(testDataIndexer);
    // then
    assertNotNull(trainedModel);
View Full Code Here

  }

  @Test
  public void testInTinyDevSet() throws Exception {
    // given
    RealValueFileEventStream rvfes1 = new RealValueFileEventStream("src/test/resources/data/opennlp/maxent/real-valued-weights-training-data.txt")
    DataIndexer testDataIndexer = new OnePassRealValueDataIndexer(rvfes1,1);
    // when
    QNModel trainedModel = new QNTrainer(15, true).trainModel(testDataIndexer);
    String[] features2Classify = new String[] {"feature2","feature3", "feature3", "feature3","feature3", "feature3", "feature3","feature3", "feature3", "feature3","feature3", "feature3"};
    double[] eval = trainedModel.eval(features2Classify);
View Full Code Here

  }
 
  @Test
  public void testModel() throws IOException {
      // given
      RealValueFileEventStream rvfes1 = new RealValueFileEventStream("src/test/resources/data/opennlp/maxent/real-valued-weights-training-data.txt")
      DataIndexer testDataIndexer = new OnePassRealValueDataIndexer(rvfes1,1);
      // when
      QNModel trainedModel = new QNTrainer(15, true).trainModel(testDataIndexer);
     
      assertTrue(trainedModel.equals(trainedModel))
View Full Code Here

  }
 
  @Test
  public void testSerdeModel() throws IOException {
      // given
      RealValueFileEventStream rvfes1 = new RealValueFileEventStream("src/test/resources/data/opennlp/maxent/real-valued-weights-training-data.txt")
      DataIndexer testDataIndexer = new OnePassRealValueDataIndexer(rvfes1,1);
      // when
     // QNModel trainedModel = new QNTrainer(5, 500, true).trainModel(new TwoPassDataIndexer(createTrainingStream()));
      QNModel trainedModel = new QNTrainer(5, 700, true).trainModel(testDataIndexer);
     
View Full Code Here

TOP

Related Classes of opennlp.model.RealValueFileEventStream

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.