Examples of OnlineSummarizer


Examples of org.apache.mahout.math.stats.OnlineSummarizer

      encoder[i] = new ConstantValueEncoder("v" + 1);
    }

    OnlineSummarizer[] s = new OnlineSummarizer[FIELDS];
    for (int i = 0; i < FIELDS; i++) {
      s[i] = new OnlineSummarizer();
    }
    long t0 = System.currentTimeMillis();
    Vector v = new DenseVector(1000);
    if ("--generate".equals(args[0])) {
      PrintWriter out = new PrintWriter(new File(args[2]));
View Full Code Here

Examples of org.apache.mahout.math.stats.OnlineSummarizer

    }

    @Test
    public void testSequence() throws IOException {
        SchemaSampler s = new SchemaSampler(Resources.asCharSource(Resources.getResource("schema005.json"), Charsets.UTF_8).read());
        OnlineSummarizer s0 = new OnlineSummarizer();
        OnlineSummarizer s1 = new OnlineSummarizer();
        for (int i = 0; i < 10000; i++) {
            JsonNode x = s.sample();
            s0.add(Iterables.size(x.get("c")));
            s1.add(Iterables.size(x.get("d")));

            for (JsonNode n : x.get("d")) {
                int z = n.asInt();
                assertTrue(z >= 3 && z < 9);
            }
        }

        assertEquals(5, s0.getMean(), 1);
        assertEquals(10, s1.getMean(), 2);
    }
View Full Code Here

Examples of org.apache.mahout.math.stats.OnlineSummarizer

  private int correctlyClassified;
  private int incorrectlyClassified;
 
  public ResultAnalyzer(Collection<String> labelSet, String defaultLabel) {
    confusionMatrix = new ConfusionMatrix(labelSet, defaultLabel);
    summarizer = new OnlineSummarizer();
  }
View Full Code Here

Examples of org.apache.mahout.math.stats.OnlineSummarizer

    List<OnlineSummarizer> summarizers = Lists.newArrayList();
    if (searcher.size() == 0) {
      return summarizers;
    }
    for (int i = 0; i < searcher.size(); ++i) {
      summarizers.add(new OnlineSummarizer());
    }
    for (Vector v : datapoints) {
      Centroid closest = (Centroid)searcher.search(v,  1).get(0).getValue();
      OnlineSummarizer summarizer = summarizers.get(closest.getIndex());
      summarizer.add(distanceMeasure.distance(v, closest));
    }
    return summarizers;
  }
View Full Code Here

Examples of org.apache.mahout.math.stats.OnlineSummarizer

            Random gen = new Random();
            out.printf("n\tq0\tq1\tq2\tq3\tq4\n");
            // for each horizon time span of interest
            for (int n : sizes) {
                System.out.printf("%d\n", n);
                OnlineSummarizer summary = new OnlineSummarizer();
                // replicate the test many times
                for (int j = 0; j < replications; j++) {
                    // pick probabilities at random

                    double[] p = new double[bandits];
                    for (int k = 0; k < bandits; k++) {
                        p[k] = gen.nextDouble();
                    }

                    // order them to make error interpretation easier
                    Arrays.sort(p);
                    BetaBayesModel s = new BetaBayesModel(bandits, RandomUtils.getRandom());
                    int wins = 0;
                    for (int i = 0; i < n; i++) {
                        int k = s.sample();
                        final double u = gen.nextDouble();
                        boolean r = u <= p[k];
                        wins += r ? 1 : 0;
                        s.train(k, r ? 1 : 0);
                    }
                    summary.add((double) wins / n - p[bandits - 1]);
                }
                out.printf("%d\t", n);
                for (int quartile = 0; quartile <= 4; quartile++) {
                    out.printf("%.3f%s", summary.getQuartile(quartile), quartile < 4 ? "\t" : "\n");
                }
                out.flush();
                finalMedianRegret = summary.getMedian();

                //      System.out.printf("%.3f\n", summary.getMean());
            }
            return finalMedianRegret;
        }
View Full Code Here

Examples of org.apache.mahout.math.stats.OnlineSummarizer

                double r = refs.get(choice).nextDouble();

                totalRegret += refs.get(bandits - 1).getMean() - refs.get(choice).getMean();
                if ((i + 1) % delta == 0) {
                    if (cumulativeRegret.size() <= k) {
                        cumulativeRegret.add(new OnlineSummarizer());
                        steps.add(i + 1);
                    }
                    cumulativeRegret.get(k).add(totalRegret);
                    k++;
                }
                if (localRegret.size() <= i / BUCKET_SIZE) {
                    localRegret.add(new OnlineSummarizer());
                    localSteps.add(i);
                }
                double thisTrialRegret = refs.get(bandits - 1).getMean() - refs.get(choice).getMean();
                localRegret.get(i / BUCKET_SIZE).add(thisTrialRegret);
                wins += r;
View Full Code Here

Examples of org.apache.mahout.math.stats.OnlineSummarizer

    public EpsilonGreedy(int bandits, double epsilon, Random gen) {
        this.gen = gen;
        this.epsilon = epsilon;
        summaries = Lists.newArrayList();
        for (int i = 0; i < bandits; i++) {
            final OnlineSummarizer s = new OnlineSummarizer();
            summaries.add(s);
            s.add(1);
        }
    }
View Full Code Here
TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.