Examples of NearestNUserNeighborhood


Examples of org.apache.mahout.cf.taste.impl.neighborhood.NearestNUserNeighborhood

  public LibimsetiRecommender(DataModel model)
      throws TasteException, IOException {
    UserSimilarity similarity = new EuclideanDistanceSimilarity(model);
    UserNeighborhood neighborhood =
        new NearestNUserNeighborhood(2, similarity, model);
    delegate =
        new GenericUserBasedRecommender(model, neighborhood, similarity);
    this.model = model;
    FastIDSet[] menWomen = GenderRescorer.parseMenWomen(readResourceToTempFile("gender.dat"));
    men = menWomen[0];
View Full Code Here

Examples of org.apache.mahout.cf.taste.impl.neighborhood.NearestNUserNeighborhood

        new GenericRecommenderIRStatsEvaluator();
      RecommenderBuilder recommenderBuilder = new RecommenderBuilder() {
        @Override
        public Recommender buildRecommender(DataModel model) throws TasteException {
          UserSimilarity similarity = new TanimotoCoefficientSimilarity(model);
          UserNeighborhood neighborhood = new NearestNUserNeighborhood(2, similarity, model);
          return new GenericBooleanPrefUserBasedRecommender(model, neighborhood, similarity);
        }
      };
      IRStatistics stats = evaluator.evaluate(recommenderBuilder, null, model, null, 10, Double.NaN, 0.1);
      System.out.println(stats);
View Full Code Here

Examples of org.apache.mahout.cf.taste.impl.neighborhood.NearestNUserNeighborhood

    RecommenderBuilder recommenderBuilder = new RecommenderBuilder() {
      @Override
      public Recommender buildRecommender(DataModel model) throws TasteException {
        UserSimilarity similarity = new PearsonCorrelationSimilarity(model);
        UserNeighborhood neighborhood =
          new NearestNUserNeighborhood(100, similarity, model);
        return new GenericUserBasedRecommender(model, neighborhood, similarity);
      }
    };
    double score = evaluator.evaluate(recommenderBuilder, null, model, 0.95, 0.05);
    System.out.println(score);
View Full Code Here

Examples of org.apache.mahout.cf.taste.impl.neighborhood.NearestNUserNeighborhood

  public static void main(String[] args) throws Exception {
    DataModel model = new GroupLensDataModel(new File("ratings.dat"));
    UserSimilarity similarity = new PearsonCorrelationSimilarity(model);
    UserNeighborhood neighborhood =
      new NearestNUserNeighborhood(100, similarity, model);
    Recommender recommender =
      new GenericUserBasedRecommender(model, neighborhood, similarity);
    LoadEvaluator.runLoad(recommender);
  }
View Full Code Here

Examples of org.apache.mahout.cf.taste.impl.neighborhood.NearestNUserNeighborhood

    RecommenderBuilder recommenderBuilder = new RecommenderBuilder() {
      @Override
      public Recommender buildRecommender(DataModel model) throws TasteException {
        UserSimilarity similarity = new PearsonCorrelationSimilarity(model);
        UserNeighborhood neighborhood =
          new NearestNUserNeighborhood(10, similarity, model);
        return new GenericUserBasedRecommender(model, neighborhood, similarity);
      }
    };
    DataModelBuilder modelBuilder = new DataModelBuilder() {
      @Override
View Full Code Here

Examples of org.apache.mahout.cf.taste.impl.neighborhood.NearestNUserNeighborhood

    RecommenderBuilder recommenderBuilder = new RecommenderBuilder() {
      @Override
      public Recommender buildRecommender(DataModel model) throws TasteException {
        UserSimilarity similarity = new PearsonCorrelationSimilarity(model);
        UserNeighborhood neighborhood =
          new NearestNUserNeighborhood(2, similarity, model);
        return new GenericUserBasedRecommender(model, neighborhood, similarity);
      }
    };
    // Use 70% of the data to train; test using the other 30%.
    double score = evaluator.evaluate(recommenderBuilder, null, model, 0.7, 1.0);
View Full Code Here

Examples of org.apache.mahout.cf.taste.impl.neighborhood.NearestNUserNeighborhood

    RecommenderBuilder recommenderBuilder = new RecommenderBuilder() {
      @Override
      public Recommender buildRecommender(DataModel model) throws TasteException {
        UserSimilarity similarity = new PearsonCorrelationSimilarity(model);
        UserNeighborhood neighborhood =
          new NearestNUserNeighborhood(2, similarity, model);
        return new GenericUserBasedRecommender(model, neighborhood, similarity);
      }
    };
    // Evaluate precision and recall "at 2":
    IRStatistics stats = evaluator.evaluate(recommenderBuilder,
View Full Code Here

Examples of org.apache.mahout.cf.taste.impl.neighborhood.NearestNUserNeighborhood

    RecommenderBuilder recommenderBuilder = new RecommenderBuilder() {
      @Override
      public Recommender buildRecommender(DataModel model) throws TasteException {
        UserSimilarity similarity = new LogLikelihoodSimilarity(model);
        UserNeighborhood neighborhood =
          new NearestNUserNeighborhood(10, similarity, model);
        return new GenericBooleanPrefUserBasedRecommender(model, neighborhood, similarity);
      }
    };
    DataModelBuilder modelBuilder = new DataModelBuilder() {
      @Override
View Full Code Here

Examples of org.apache.mahout.cf.taste.impl.neighborhood.NearestNUserNeighborhood

  }

  public void testUserLoad() throws Exception {
    DataModel model = createModel();
    UserSimilarity userSimilarity = new PearsonCorrelationSimilarity(model);
    UserNeighborhood neighborhood = new NearestNUserNeighborhood(10, userSimilarity, model);
    Recommender recommender =
        new CachingRecommender(new GenericUserBasedRecommender(model, neighborhood, userSimilarity));
    doTestLoad(recommender, 40);
  }
View Full Code Here

Examples of org.apache.mahout.cf.taste.impl.neighborhood.NearestNUserNeighborhood

    super.tearDown();
  }

  public void testFile() throws Exception {
    UserSimilarity userSimilarity = new PearsonCorrelationSimilarity(model);
    UserNeighborhood neighborhood = new NearestNUserNeighborhood(2, userSimilarity, model);
    Recommender recommender = new GenericUserBasedRecommender(model, neighborhood, userSimilarity);
    assertEquals(2, recommender.recommend(123, 3).size());
    assertEquals(2, recommender.recommend(234, 3).size());
    assertEquals(1, recommender.recommend(345, 3).size());
View Full Code Here
TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.