Examples of ModifiableDBIDs


Examples of de.lmu.ifi.dbs.elki.database.ids.ModifiableDBIDs

    // Temporary storage for m.
    WritableDataStore<D> m = DataStoreUtil.makeStorage(distQuery.getRelation().getDBIDs(), DataStoreFactory.HINT_HOT | DataStoreFactory.HINT_TEMP, distCls);

    FiniteProgress progress = logger.isVerbose() ? new FiniteProgress("Clustering", distQuery.getRelation().size(), logger) : null;
    // has to be an array for monotonicity reasons!
    ModifiableDBIDs processedIDs = DBIDUtil.newArray(distQuery.getRelation().size());

    // apply the algorithm
    for(DBID id : distQuery.getRelation().iterDBIDs()) {
      step1(id);
      step2(id, processedIDs, distQuery, m);
      step3(id, processedIDs, m);
      step4(id, processedIDs);

      processedIDs.add(id);

      if(progress != null) {
        progress.incrementProcessed(logger);
      }
    }
View Full Code Here

Examples of de.lmu.ifi.dbs.elki.database.ids.ModifiableDBIDs

    // extract the child clusters
    Map<DBID, ModifiableDBIDs> cluster_ids = new HashMap<DBID, ModifiableDBIDs>();
    Map<DBID, D> cluster_distances = new HashMap<DBID, D>();
    for(DBID id : ids) {
      DBID lastObjectInCluster = lastObjectInCluster(id, stopdist, pi, lambda);
      ModifiableDBIDs cluster = cluster_ids.get(lastObjectInCluster);
      if(cluster == null) {
        cluster = DBIDUtil.newArray();
        cluster_ids.put(lastObjectInCluster, cluster);
      }
      cluster.add(id);

      D lambda_id = lambda.get(id);
      if(stopdist != null && lambda_id.compareTo(stopdist) <= 0 && (cluster_distances.get(lastObjectInCluster) == null || lambda_id.compareTo(cluster_distances.get(lastObjectInCluster)) > 0)) {
        cluster_distances.put(lastObjectInCluster, lambda_id);
      }
View Full Code Here

Examples of de.lmu.ifi.dbs.elki.database.ids.ModifiableDBIDs

    for(DBID cur : order) {
      DBID dest = pi.get(cur);
      D l = lambda.get(cur);
      // logger.debugFine("DBID " + cur.toString() + " dist: " + l.toString());
      if(stopdist != null && stopdist.compareTo(l) > 0) {
        ModifiableDBIDs curset = cids.remove(cur);
        ModifiableDBIDs destset = cids.get(dest);
        if(destset == null) {
          if(curset != null) {
            destset = curset;
          }
          else {
            destset = DBIDUtil.newHashSet();
            destset.add(cur);
          }
          destset.add(dest);
          cids.put(dest, destset);
        }
        else {
          if(curset != null) {
            destset.addDBIDs(curset);
          }
          else {
            destset.add(cur);
          }
        }
        curdist = l;
      }
      else {
        if(curdist == null || l.compareTo(curdist) > 0) {
          // New distance level reached. Post-process the current objects
          for(Entry<DBID, ModifiableDBIDs> ent : cids.entrySet()) {
            DBID key = ent.getKey();
            ModifiableDBIDs clusids = ent.getValue();
            // Make a new cluster
            String cname = "Cluster_" + key.toString() + "_" + curdist.toString();
            Cluster<Model> cluster = new Cluster<Model>(cname, clusids, ClusterModel.CLUSTER, hier);
            // Collect child clusters and clean up the cluster ids, keeping only
            // "new" objects.
            Iterator<DBID> iter = clusids.iterator();
            while(iter.hasNext()) {
              DBID child = iter.next();
              Cluster<Model> chiclus = clusters.get(child);
              if(chiclus != null) {
                hier.add(cluster, chiclus);
                clusters.remove(child);
                iter.remove();
              }
            }
            clusters.put(key, cluster);
          }
          if(logger.isDebuggingFine()) {
            StringBuffer buf = new StringBuffer();
            buf.append("Number of clusters at depth ");
            buf.append((curdist != null ? curdist.toString() : "null"));
            buf.append(": ").append(clusters.size()).append(" ");
            buf.append("last-objects:");
            for(DBID id : clusters.keySet()) {
              buf.append(" ").append(id.toString());
            }
            logger.debugFine(buf.toString());
          }
          cids.clear();
          curdist = l;
        }
        // Add the current object to the destinations cluster
        {
          ModifiableDBIDs destset = cids.get(dest);
          if(destset == null) {
            destset = DBIDUtil.newHashSet();
            cids.put(dest, destset);
            destset.add(dest);
          }
          destset.add(cur);
        }
      }
      // Decrement counter
      if(progress != null) {
        progress.incrementProcessed(logger);
View Full Code Here

Examples of de.lmu.ifi.dbs.elki.database.ids.ModifiableDBIDs

      }
      return;
    }

    // try to expand the cluster
    ModifiableDBIDs currentCluster = DBIDUtil.newArray();
    for(DBID seed : seeds) {
      if(!processedIDs.contains(seed)) {
        currentCluster.add(seed);
        processedIDs.add(seed);
      }
      else if(noise.contains(seed)) {
        currentCluster.add(seed);
        noise.remove(seed);
      }
    }
    seeds.remove(0);

    while(seeds.size() > 0) {
      DBID o = seeds.remove(0);
      List<DBID> neighborhood = findSNNNeighbors(snnInstance, o);

      if(neighborhood.size() >= minpts) {
        for(DBID p : neighborhood) {
          boolean inNoise = noise.contains(p);
          boolean unclassified = !processedIDs.contains(p);
          if(inNoise || unclassified) {
            if(unclassified) {
              seeds.add(p);
            }
            currentCluster.add(p);
            processedIDs.add(p);
            if(inNoise) {
              noise.remove(p);
            }
          }
        }
      }

      if(objprog != null && clusprog != null) {
        objprog.setProcessed(processedIDs.size(), logger);
        int numClusters = currentCluster.size() > minpts ? resultList.size() + 1 : resultList.size();
        clusprog.setProcessed(numClusters, logger);
      }

      if(processedIDs.size() == snnInstance.getRelation().size() && noise.size() == 0) {
        break;
      }
    }
    if(currentCluster.size() >= minpts) {
      resultList.add(currentCluster);
    }
    else {
      for(DBID id : currentCluster) {
        noise.add(id);
View Full Code Here

Examples of de.lmu.ifi.dbs.elki.database.ids.ModifiableDBIDs

   * @return the mean vectors of the given clusters in the given database
   */
  protected List<V> means(List<? extends ModifiableDBIDs> clusters, List<V> means, Relation<V> database) {
    List<V> newMeans = new ArrayList<V>(k);
    for(int i = 0; i < k; i++) {
      ModifiableDBIDs list = clusters.get(i);
      V mean = null;
      for(Iterator<DBID> clusterIter = list.iterator(); clusterIter.hasNext();) {
        if(mean == null) {
          mean = database.get(clusterIter.next());
        }
        else {
          mean = mean.plus(database.get(clusterIter.next()));
        }
      }
      if(list.size() > 0) {
        assert mean != null;
        mean = mean.multiplicate(1.0 / list.size());
      }
      else {
        mean = means.get(i);
      }
      newMeans.add(mean);
View Full Code Here

Examples of de.lmu.ifi.dbs.elki.database.ids.ModifiableDBIDs

      }
      return;
    }

    // try to expand the cluster
    ModifiableDBIDs currentCluster = DBIDUtil.newArray();
    for(DistanceResultPair<DoubleDistance> seed : seeds) {
      DBID nextID = seed.getDBID();

      Integer nextID_corrDim = distFunc.getIndex().getLocalProjection(nextID).getCorrelationDimension();
      // nextID is not reachable from start object
      if(nextID_corrDim > lambda) {
        continue;
      }

      if(!processedIDs.contains(nextID)) {
        currentCluster.add(nextID);
        processedIDs.add(nextID);
      }
      else if(noise.contains(nextID)) {
        currentCluster.add(nextID);
        noise.remove(nextID);
      }
    }
    seeds.remove(0);

    while(seeds.size() > 0) {
      DBID q = seeds.remove(0).getDBID();
      Integer corrDim_q = distFunc.getIndex().getLocalProjection(q).getCorrelationDimension();
      // q forms no lambda-dim hyperplane
      if(corrDim_q > lambda) {
        continue;
      }

      List<DistanceResultPair<DoubleDistance>> reachables = rangeQuery.getRangeForDBID(q, epsilon);
      if(reachables.size() > minpts) {
        for(DistanceResultPair<DoubleDistance> r : reachables) {
          Integer corrDim_r = distFunc.getIndex().getLocalProjection(r.getDBID()).getCorrelationDimension();
          // r is not reachable from q
          if(corrDim_r > lambda) {
            continue;
          }

          boolean inNoise = noise.contains(r.getDBID());
          boolean unclassified = !processedIDs.contains(r.getDBID());
          if(inNoise || unclassified) {
            if(unclassified) {
              seeds.add(r);
            }
            currentCluster.add(r.getDBID());
            processedIDs.add(r.getDBID());
            if(inNoise) {
              noise.remove(r.getDBID());
            }
            if(objprog != null && clusprog != null) {
              objprog.setProcessed(processedIDs.size(), getLogger());
              int numClusters = currentCluster.size() > minpts ? resultList.size() + 1 : resultList.size();
              clusprog.setProcessed(numClusters, getLogger());
            }
          }
        }
      }

      if(processedIDs.size() == distFunc.getRelation().size() && noise.size() == 0) {
        break;
      }
    }

    if(currentCluster.size() >= minpts) {
      resultList.add(currentCluster);
    }
    else {
      for(DBID id : currentCluster) {
        noise.add(id);
View Full Code Here

Examples of de.lmu.ifi.dbs.elki.database.ids.ModifiableDBIDs

   * @param p1 First Point of the selected rectangle
   * @param p2 Second Point of the selected rectangle
   */
  private void updateSelection(Projection proj, SVGPoint p1, SVGPoint p2) {
    DBIDSelection selContext = context.getSelection();
    ModifiableDBIDs selection;
    if(selContext != null) {
      selection = DBIDUtil.newHashSet(selContext.getSelectedIds());
    }
    else {
      selection = DBIDUtil.newHashSet();
    }
    DoubleDoublePair[] ranges;

    if(p1 == null || p2 == null) {
      logger.warning("no rect selected: p1: " + p1 + " p2: " + p2);
    }
    else {
      double x1 = Math.min(p1.getX(), p2.getX());
      double x2 = Math.max(p1.getX(), p2.getX());
      double y1 = Math.max(p1.getY(), p2.getY());
      double y2 = Math.min(p1.getY(), p2.getY());

      if(selContext instanceof RangeSelection) {
        ranges = ((RangeSelection) selContext).getRanges();
      }
      else {
        ranges = new DoubleDoublePair[dim];
      }
      updateSelectionRectKoordinates(x1, x2, y1, y2, ranges);

      selection.clear();
      boolean idIn = true;
      for(DBID id : rel.iterDBIDs()) {
        NumberVector<?, ?> dbTupel = rel.get(id);
        idIn = true;
        for(int i = 0; i < dim; i++) {
          if(ranges != null && ranges[i] != null) {
            if(dbTupel.doubleValue(i + 1) < ranges[i].first || dbTupel.doubleValue(i + 1) > ranges[i].second) {
              idIn = false;
              break;
            }
          }
        }
        if(idIn == true) {
          selection.add(id);
        }
      }
      context.setSelection(new RangeSelection(selection, ranges));
    }
  }
View Full Code Here

Examples of de.lmu.ifi.dbs.elki.database.ids.ModifiableDBIDs

  public static <D extends Distance<D>> Clustering<Model> makeOPTICSCut(ClusterOrderResult<D> co, OPTICSDistanceAdapter<D> adapter, double epsilon) {
    List<ClusterOrderEntry<D>> order = co.getClusterOrder();
    // Clustering model we are building
    Clustering<Model> clustering = new Clustering<Model>("OPTICS Cut Clustering", "optics-cut");
    // Collects noise elements
    ModifiableDBIDs noise = DBIDUtil.newHashSet();

    double lastDist = Double.MAX_VALUE;
    double actDist = Double.MAX_VALUE;

    // Current working set
    ModifiableDBIDs current = DBIDUtil.newHashSet();

    // TODO: can we implement this more nicely with a 1-lookahead?
    for(int j = 0; j < order.size(); j++) {
      lastDist = actDist;
      actDist = adapter.getDoubleForEntry(order.get(j));

      if(actDist <= epsilon) {
        // the last element before the plot drops belongs to the cluster
        if(lastDist > epsilon && j > 0) {
          // So un-noise it
          noise.remove(order.get(j - 1).getID());
          // Add it to the cluster
          current.add(order.get(j - 1).getID());
        }
        current.add(order.get(j).getID());
      }
      else {
        // 'Finish' the previous cluster
        if(!current.isEmpty()) {
          // TODO: do we want a minpts restriction?
          // But we get have only core points guaranteed anyway.
          clustering.addCluster(new Cluster<Model>(current, ClusterModel.CLUSTER));
          current = DBIDUtil.newHashSet();
        }
        // Add to noise
        noise.add(order.get(j).getID());
      }
    }
    // Any unfinished cluster will also be added
    if(!current.isEmpty()) {
      clustering.addCluster(new Cluster<Model>(current, ClusterModel.CLUSTER));
    }
    // Add noise
    clustering.addCluster(new Cluster<Model>(noise, true, ClusterModel.CLUSTER));
    return clustering;
View Full Code Here

Examples of de.lmu.ifi.dbs.elki.database.ids.ModifiableDBIDs

      }
      return;
    }

    // try to expand the cluster
    ModifiableDBIDs currentCluster = DBIDUtil.newArray();
    for(DistanceResultPair<D> seed : seeds) {
      DBID nextID = seed.getDBID();
      if(!processedIDs.contains(nextID)) {
        currentCluster.add(nextID);
        processedIDs.add(nextID);
      }
      else if(noise.contains(nextID)) {
        currentCluster.add(nextID);
        noise.remove(nextID);
      }
    }
    seeds.remove(0);

    while(seeds.size() > 0) {
      DBID o = seeds.remove(0).getDBID();
      List<DistanceResultPair<D>> neighborhood = rangeQuery.getRangeForDBID(o, epsilon);

      if(neighborhood.size() >= minpts) {
        for(DistanceResultPair<D> neighbor : neighborhood) {
          DBID p = neighbor.getDBID();
          boolean inNoise = noise.contains(p);
          boolean unclassified = !processedIDs.contains(p);
          if(inNoise || unclassified) {
            if(unclassified) {
              seeds.add(neighbor);
            }
            currentCluster.add(p);
            processedIDs.add(p);
            if(inNoise) {
              noise.remove(p);
            }
          }
        }
      }

      if(processedIDs.size() == rangeQuery.getRelation().size() && noise.size() == 0) {
        break;
      }

      if(objprog != null && clusprog != null) {
        objprog.setProcessed(processedIDs.size(), logger);
        int numClusters = currentCluster.size() > minpts ? resultList.size() + 1 : resultList.size();
        clusprog.setProcessed(numClusters, logger);
      }
    }
    if(currentCluster.size() >= minpts) {
      resultList.add(currentCluster);
    }
    else {
      for(DBID id : currentCluster) {
        noise.add(id);
View Full Code Here

Examples of de.lmu.ifi.dbs.elki.database.ids.ModifiableDBIDs

            // Condition 3a: obey minpts
            if(cend - cstart + 1 < minpts) {
              continue;
            }
            // Build the cluster
            ModifiableDBIDs dbids = DBIDUtil.newArray();
            for(int idx = cstart; idx <= cend; idx++) {
              final DBID dbid = clusterOrder.get(idx).getID();
              // Collect only unclaimed IDs.
              if(unclaimedids.remove(dbid)) {
                dbids.add(dbid);
              }
            }
            if(logger.isDebuggingFine()) {
              logger.debugFine("Found cluster with " + dbids.size() + " new objects, length " + (cstart - cend + 1));
            }
            OPTICSModel model = new OPTICSModel(cstart, cend);
            Cluster<OPTICSModel> cluster = new Cluster<OPTICSModel>("Cluster_" + cstart + "_" + cend, dbids, model, hier);
            // Build the hierarchy
            {
View Full Code Here
TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.