Examples of MeanTreeCollector


Examples of org.apache.mahout.df.callback.MeanTreeCollector

                                                                                            // = 1
   
    // compute the test set error (Selection Error), and mean tree error (One Tree Error),
    // using the lowest oob error forest
    ForestPredictions testError = new ForestPredictions(test.size(), nblabels); // test set error
    MeanTreeCollector treeError = new MeanTreeCollector(test, nbtrees); // mean tree error
   
    // compute the test set error using m=1 (Single Input Error)
    errorOne = new ForestPredictions(test.size(), nblabels);
   
    if (oobM < oobOne) {
      forestM.classify(test, new MultiCallback(testError, treeError));
      forestOne.classify(test, errorOne);
    } else {
      forestOne.classify(test, new MultiCallback(testError, treeError, errorOne));
    }
   
    sumTestErr += ErrorEstimate.errorRate(testLabels, testError.computePredictions(rng));
    sumOneErr += ErrorEstimate.errorRate(testLabels, errorOne.computePredictions(rng));
    sumTreeErr += treeError.meanTreeError();
  }
View Full Code Here

Examples of org.apache.mahout.df.callback.MeanTreeCollector

    double oobOne = ErrorEstimate.errorRate(trainLabels, errorOne.computePredictions(rng)); // oob error estimate when m = 1

    // compute the test set error (Selection Error), and mean tree error (One Tree Error),
    // using the lowest oob error forest
    ForestPredictions testError = new ForestPredictions(dataSize, nblabels); // test set error
    MeanTreeCollector treeError = new MeanTreeCollector(train, nbtrees); // mean tree error

    // compute the test set error using m=1 (Single Input Error)
    errorOne = new ForestPredictions(dataSize, nblabels);

    if (oobM < oobOne) {
      forestM.classify(test, new MultiCallback(testError, treeError));
      forestOne.classify(test, errorOne);
    } else {
      forestOne.classify(test,
          new MultiCallback(testError, treeError, errorOne));
    }

    sumTestErr += ErrorEstimate.errorRate(testLabels, testError.computePredictions(rng));
    sumOneErr += ErrorEstimate.errorRate(testLabels, errorOne.computePredictions(rng));
    sumTreeErr += treeError.meanTreeError();
  }
View Full Code Here
TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.