Examples of LUDecomposition


Examples of org.apache.commons.math.linear.LUDecomposition

   */
  @Override
  public LUDecompositionResult evaluate(final DoubleMatrix2D x) {
    Validate.notNull(x);
    final RealMatrix temp = CommonsMathWrapper.wrap(x);
    final LUDecomposition lu = new LUDecompositionImpl(temp);
    return new LUDecompositionCommonsResult(lu);
  }
View Full Code Here

Examples of org.apache.commons.math3.linear.LUDecomposition

     */
    @Override
    protected RealMatrix calculateBetaVariance() {
        int p = getX().getColumnDimension();
        RealMatrix Raug = qr.getR().getSubMatrix(0, p - 1 , 0, p - 1);
        RealMatrix Rinv = new LUDecomposition(Raug).getSolver().getInverse();
        return Rinv.multiply(Rinv.transpose());
    }
View Full Code Here

Examples of org.apache.commons.math3.linear.LUDecomposition

     * <p>The inverse of the covariance matrix is lazily evaluated and cached.</p>
     * @return inverse of the covariance
     */
    protected RealMatrix getOmegaInverse() {
        if (OmegaInverse == null) {
            OmegaInverse = new LUDecomposition(Omega).getSolver().getInverse();
        }
        return OmegaInverse;
    }
View Full Code Here

Examples of org.apache.commons.math3.linear.LUDecomposition

    @Override
    protected RealVector calculateBeta() {
        RealMatrix OI = getOmegaInverse();
        RealMatrix XT = getX().transpose();
        RealMatrix XTOIX = XT.multiply(OI).multiply(getX());
        RealMatrix inverse = new LUDecomposition(XTOIX).getSolver().getInverse();
        return inverse.multiply(XT).multiply(OI).operate(getY());
    }
View Full Code Here

Examples of org.apache.commons.math3.linear.LUDecomposition

     */
    @Override
    protected RealMatrix calculateBetaVariance() {
        RealMatrix OI = getOmegaInverse();
        RealMatrix XTOIX = getX().transpose().multiply(OI).multiply(getX());
        return new LUDecomposition(XTOIX).getSolver().getInverse();
    }
View Full Code Here

Examples of org.apache.commons.math3.linear.LUDecomposition

            try {
                // solve the linearized least squares problem
                RealMatrix mA = new BlockRealMatrix(a);
                DecompositionSolver solver = useLU ?
                        new LUDecomposition(mA).getSolver() :
                        new QRDecomposition(mA).getSolver();
                final double[] dX = solver.solve(new ArrayRealVector(b, false)).toArray();
                // update the estimated parameters
                for (int i = 0; i < nC; ++i) {
                    currentPoint[i] += dX[i];
View Full Code Here

Examples of org.apache.commons.math3.linear.LUDecomposition

            try {
                // solve the linearized least squares problem
                RealMatrix mA = new BlockRealMatrix(a);
                DecompositionSolver solver = useLU ?
                        new LUDecomposition(mA).getSolver() :
                        new QRDecomposition(mA).getSolver();
                final double[] dX = solver.solve(new ArrayRealVector(b, false)).toArray();
                // update the estimated parameters
                for (int i = 0; i < nC; ++i) {
                    currentPoint[i] += dX[i];
View Full Code Here

Examples of org.apache.commons.math3.linear.LUDecomposition

            try {
                // solve the linearized least squares problem
                RealMatrix mA = new BlockRealMatrix(a);
                DecompositionSolver solver = useLU ?
                        new LUDecomposition(mA).getSolver() :
                        new QRDecomposition(mA).getSolver();
                final double[] dX = solver.solve(new ArrayRealVector(b, false)).toArray();
                // update the estimated parameters
                for (int i = 0; i < cols; ++i) {
                    point[i] += dX[i];
View Full Code Here

Examples of org.apache.commons.math3.linear.LUDecomposition

     */
    @Override
    protected RealMatrix calculateBetaVariance() {
        int p = getX().getColumnDimension();
        RealMatrix Raug = qr.getR().getSubMatrix(0, p - 1 , 0, p - 1);
        RealMatrix Rinv = new LUDecomposition(Raug).getSolver().getInverse();
        return Rinv.multiply(Rinv.transpose());
    }
View Full Code Here

Examples of org.apache.commons.math3.linear.LUDecomposition

     * <p>The inverse of the covariance matrix is lazily evaluated and cached.</p>
     * @return inverse of the covariance
     */
    protected RealMatrix getOmegaInverse() {
        if (OmegaInverse == null) {
            OmegaInverse = new LUDecomposition(Omega).getSolver().getInverse();
        }
        return OmegaInverse;
    }
View Full Code Here
TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.