Package ivory.smrf.model.importance

Examples of ivory.smrf.model.importance.ConceptImportanceModel


          String importanceModelId = XMLTools.getAttributeValue(child, "id", null);
          if(importanceModelId == null) {
            throw new RuntimeException("Invalid importance model!");
          }
         
          ConceptImportanceModel importanceModel = null;
          try {
            importanceModel = ConceptImportanceModel.get(child);
          }
          catch(Exception e) {
            throw new RuntimeException(e);
View Full Code Here


        // Get feature weight (default = 1.0).
        float weight = XMLTools.getAttributeValue(child, "weight", 1.0f);

        // Concept importance model (optional).
        ConceptImportanceModel importanceModel = null;

        // Get concept importance source (if applicable).
        String importanceSource = XMLTools.getAttributeValue(child, "importance", "");
        if (!importanceSource.equals("")) {
          importanceModel = env.getImportanceModel(importanceSource);
          if (importanceModel == null) {
            throw new RetrievalException("ImportanceModel " + importanceSource + " not found!");
          }
        }

        // Get CliqueSet type.
        String cliqueSetType = XMLTools.getAttributeValue(child, "cliqueSet", "");

        // Get Cascade stage (if any)
        int cascadeStage = XMLTools.getAttributeValue(child, "cascadeStage", -1);

        String pruner_and_params = XMLTools.getAttributeValue(child, "prune", "null");
        String thePruner = (pruner_and_params.trim().split("\\s+"))[0];
        String conceptBinType = XMLTools.getAttributeValue(child, "conceptBinType", "");
        String conceptBinParams = XMLTools.getAttributeValue(child, "conceptBinParams", "");
        String scoreFunction = XMLTools.getAttributeValue(child, "scoreFunction", null);

        int width = XMLTools.getAttributeValue(child, "width", -1);

        if (cascadeStage != -1) {
          RetrievalEnvironment.setIsNew(true);
        } else {
          RetrievalEnvironment.setIsNew(false);
        }

        if (cascadeStage != -1) {
          if (!conceptBinType.equals("") || !conceptBinParams.equals("")) {
            if (conceptBinType.equals("") || conceptBinParams.equals("")) {
              throw new RetrievalException("Most specify conceptBinType || conceptBinParams");
            }
            importanceModel = env.getImportanceModel("wsd");

            if (importanceModel == null) {
              throw new RetrievalException("ImportanceModel " + importanceSource + " not found!");
            }
          }
        }

        cascade_stage_proper = cascadeStage;

        if (cascadeStage != -1 && conceptBinType.equals("") && conceptBinParams.equals("")) {
          cascade_stage_proper = cascade_stage;
        }

        // Construct the clique set.
        CascadeCliqueSet cliqueSet = (CascadeCliqueSet) (CascadeCliqueSet.create(cliqueSetType,
            env, queryTerms, child, cascade_stage_proper, pruner_and_params));// , approxProximity);

        // Get cliques from clique set.
        List<Clique> cliques = cliqueSet.getCliques();

        if (cascadeStage != -1 && conceptBinType.equals("") && conceptBinParams.equals("")) {
          if (cliques.size() > 0) {
            cascade_stage++;
          }
        } else if (cascadeStage != -1 && !conceptBinType.equals("") && !conceptBinParams.equals("")) {
          if (cliques.size() > 0) {
            int[] order = new int[cliques.size()];
            double[] conceptWeights = new double[cliques.size()];
            int cntr = 0;
            String all_concepts = "";
            for (Clique c : cliques) {
              float importance = importanceModel.getCliqueWeight(c);
              order[cntr] = cntr;
              conceptWeights[cntr] = importance;
              cntr++;
              all_concepts += c.getConcept() + " ";
            }
            ivory.smrf.model.constrained.ConstraintModel.Quicksort(conceptWeights, order, 0,
                order.length - 1);

            int[] keptCliques = getCascadeCliques(conceptBinType, conceptBinParams, conceptWeights,
                order, all_concepts, featureID, thePruner, width + "", scoreFunction);

            List<Clique> cliques2 = Lists.newArrayList();
            for (int k = 0; k < keptCliques.length; k++) {
              int index = keptCliques[k];
              cliques2.add(cliques.get(index));
            }
            cliques = Lists.newArrayList();
            for (int k = 0; k < cliques2.size(); k++) {
              cliques.add(cliques2.get(k));
            }

            if (keptCliques.length != 0) {
              for (Clique c : cliques) {
                ((CascadeClique) c).setCascadeStage(cascade_stage);
              }
              cascade_stage++;
            }
          }
        }

        for (Clique c : cliques) {

          double w = weight;

          c.setParameterName(featureID); // Parameter id.
          c.setParameterWeight(weight); // Weight.
          c.setType(cliqueSet.getType()); // Clique type.

          // Get clique weight.
          if (!importanceSource.equals("")) {

            float importance = importanceModel.getCliqueWeight(c);

            if (weight == -1.0f) { // default value.
              c.setParameterWeight(1.0f);
            }
View Full Code Here

      float score = 0.0f;
      for (int i = 0; i < fbResults.length; i++) {
        float docScore = 0.0f;
        for (int j = 0; j < scoringFunctions.length; j++) {
          float weight = parameters.get(j).getWeight();
          ConceptImportanceModel importanceModel = importanceModels.get(j);
          if (importanceModel != null) {
            weight *= importanceModel.getConceptWeight(concept);
          }
          ScoringFunction fn = scoringFunctions[j];
          fn.initialize(termEvidence, globalEvidence);

          Short tf = tfs[i].get(vocab[conceptID].getKey());
          if (tf == null) {
            tf = 0;
          }
          float s = fn.getScore(tf, doclens[i]);

          docScore += weight * s;
        }
        score += Math.exp(fbResults[i].score + docScore);
      }

      int size = sortedConcepts.size();
      if (size < numFeedbackTerms || sortedConcepts.peek().score < score) {
        if (size == numFeedbackTerms) {
          sortedConcepts.poll(); // Remove worst concept.
        }
        sortedConcepts.add(new Accumulator(conceptID, score));
      }
    }

    // Compute the weights of the expanded terms.
    int numTerms = Math.min(numFeedbackTerms, sortedConcepts.size());
    float totalWt = 0.0f;
    Accumulator[] bestConcepts = new Accumulator[numTerms];
    for (int i = 0; i < numTerms; i++) {
      Accumulator a = sortedConcepts.poll();
      bestConcepts[i] = a;
      totalWt += a.score;
    }

    // Document node (shared across all expansion cliques).
    DocumentNode docNode = new DocumentNode();

    // Expression generator (shared across all expansion cliques).
    ExpressionGenerator generator = new TermExpressionGenerator();

    // Add cliques corresponding to best expansion concepts.
    for (int i = 0; i < numTerms; i++) {
      Accumulator a = bestConcepts[i];

      // Construct the MRF corresponding to this concept.
      String concept = vocab[a.docno].getKey();

      for (int j = 0; j < scoringFunctionNodes.size(); j++) {
        Node functionNode = scoringFunctionNodes.get(j);
        String functionType = XMLTools.getAttributeValue(functionNode, "scoreFunction", null);
        ScoringFunction fn = ScoringFunction.create(functionType, functionNode);

        Parameter parameter = parameters.get(j);
        ConceptImportanceModel importanceModel = importanceModels.get(j);

        List<GraphNode> cliqueNodes = Lists.newArrayList();
        cliqueNodes.add(docNode);

        TermNode termNode = new TermNode(concept);
        cliqueNodes.add(termNode);

        PotentialFunction potential = new QueryPotential(env, generator, fn);

        Clique c = new Clique(cliqueNodes, potential, parameter);
        c.setType(Clique.Type.Term);

        // Scale importance values by LCE likelihood.
        float normalizedScore = expanderWeight * (a.score / totalWt);
        if (importanceModel != null) {
          c.setImportance(normalizedScore * importanceModel.getCliqueWeight(c));
        } else {
          c.setImportance(normalizedScore);
        }

        expandedMRF.addClique(c);
View Full Code Here

TOP

Related Classes of ivory.smrf.model.importance.ConceptImportanceModel

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.