Package ivory.smrf.model.builder

Examples of ivory.smrf.model.builder.MRFBuilder


      Node modelNode = models.get(modelID);
      Node expanderNode = expanders.get(modelID);

      // Initialize retrieval environment variables.
      QueryRunner runner = null;
      MRFBuilder builder = null;
      MRFExpander expander = null;
      try {
        // Get the MRF builder.
        builder = MRFBuilder.get(env, modelNode.cloneNode(true));
View Full Code Here


      // compute features for each model
      for(String modelName : modelNames) {
        // build mrf from model node
        Node modelNode = runner.getModel(modelName);
        MRFBuilder builder = MRFBuilder.get(env, modelNode);     
        MarkovRandomField mrf = builder.buildMRF(env.tokenize(queryText));

        // get mrf cliques
        List<Clique> cliques = mrf.getCliques();

        // add parameter name to feature name set
        for(Clique c : cliques) {
          // parameter id
          String paramId = c.getParameter().getName();

          // handle linear importance model weights
          if(importanceModels.size() != 0) {
            for(LinearImportanceModel model : linearImportanceModels) {
              List<MetaFeature> metaFeatures = model.getMetaFeatures();

              for(MetaFeature metaFeat : metaFeatures) {
                // feature id = modelName-metaFeatId-paramId
                String featId = modelName + "-" + metaFeat.getName() + "-" + paramId;
                featureNames.add(featId);
              }
            }
          }

          // feature id = modelName-paramId
          String featId = modelName + "-" + paramId;

          featureNames.add(featId);
        }
      }     
    }

    // add judgment feature name
    featureNames.add(JUDGMENT_FEATURE_NAME);

    // print feature name header
    System.out.print(QUERY_FEATURE_NAME + "\t" + DOC_FEATURE_NAME);
    for(String featureName : featureNames) {
      System.out.print("\t" + featureName);
    }
    System.out.println();

    // extract features query-by-query
    for(Entry<String, String> queryEntry : queries.entrySet()) {
      // feature map (docname -> feature name -> feature value)
      SortedMap<String,SortedMap<String,Double>> featureValues = new TreeMap<String,SortedMap<String,Double>>();

      // query id and text
      String qid = queryEntry.getKey();
      String queryText = queryEntry.getValue();

      // compute features for each model
      for(String modelName : modelNames) {
        // build mrf from model node
        Node modelNode = runner.getModel(modelName);
        MRFBuilder builder = MRFBuilder.get(env, modelNode);     
        MarkovRandomField mrf = builder.buildMRF(env.tokenize(queryText));

        // initialize mrf
        mrf.initialize();

        // get mrf cliques
View Full Code Here

     // compute features for each model
     for(String modelName : modelNames) {
       // build mrf from model node
       Node modelNode = runner.getModel(modelName);
       MRFBuilder builder = MRFBuilder.get(env, modelNode);
       MarkovRandomField mrf = builder.buildMRF(queryText.split("\\s+"));

       // get mrf cliques
      List<Clique> cliques = mrf.getCliques();

      // add parameter name to feature name set
      for(Clique c : cliques) {
        // parameter id
        String paramId = c.getParameter().getName();

        // handle linear importance model weights
        if(importanceModels.size() != 0) {
          for(LinearImportanceModel model : linearImportanceModels) {
            List<MetaFeature> metaFeatures = model.getMetaFeatures();

            for(MetaFeature metaFeat : metaFeatures) {
              // feature id = modelName-metaFeatId-paramId
              String featId = modelName + "-" + metaFeat.getName() + "-" + paramId;
              featureNames.add(featId);
            }
          }
        }

        // feature id = modelName-paramId
        String featId = modelName + "-" + paramId;

        featureNames.add(featId);
      }
     }
   }

   // add judgment feature name
   featureNames.add(JUDGMENT_FEATURE_NAME);

   // print feature name header
   System.out.print(QUERY_FEATURE_NAME + "\t" + DOC_FEATURE_NAME);
   for(String featureName : featureNames) {
     System.out.print("\t" + featureName);
   }
   System.out.println();

   // extract features query-by-query
   for(Entry<String, String> queryEntry : queries.entrySet()) {
     // feature map (docname -> feature name -> feature value)
     SortedMap<String,SortedMap<String,Operator>> featureValues = new TreeMap<String,SortedMap<String,Operator>>();

     // query id and text
     String qid = queryEntry.getKey();
     String queryText = queryEntry.getValue();

     // compute features for each model
     for(String modelName : modelNames) {
       // build mrf from model node
       Node modelNode = runner.getModel(modelName);
       MRFBuilder builder = MRFBuilder.get(env, modelNode);
       MarkovRandomField mrf = builder.buildMRF(queryText.split("\\s+"));

       // initialize mrf
       mrf.initialize();

       // get mrf cliques
View Full Code Here

      }
      RetrievalEnvironment.topK = kVal;

      // Initialize retrieval environment variables.
      CascadeQueryRunner runner = null;
      MRFBuilder builder = null;
      MRFExpander expander = null;

      try {
        // Get the MRF builder.
        builder = MRFBuilder.get(env, modelNode.cloneNode(true));
View Full Code Here

    }

    try {
      Node modelNode = d.getElementsByTagName("model").item(0);

      MRFBuilder builder = MRFBuilder.get(mEnv, modelNode.cloneNode(true));

     
      // Set the default number of hits to 2000 because that's what we had in our
      // official TREC 2009 web track runs; otherwise, IF merging approach
      // will give slightly different results, so we won't be able to
View Full Code Here

    // Find the best concepts for each of the expansion models.
    for (int modelNum = 0; modelNum < builders.size(); modelNum++) {
      // Get information about this expansion model.
      int curGramSize = gramSizes.get(modelNum);
      MRFBuilder curBuilder = builders.get(modelNum);
      int curFbDocs = fbDocList.get(modelNum);
      int curFbTerms = fbTermList.get(modelNum);

      // Gather Accumulators we're actually going to use for feedback purposes.
      Accumulator[] fbResults = new Accumulator[Math.min(results.length, curFbDocs)];
      for (int i = 0; i < Math.min(results.length, curFbDocs); i++) {
        fbResults[i] = results[i];
      }

      // Sort the Accumulators by docid.
      Arrays.sort(fbResults, new Accumulator.DocnoComparator());

      // Get docnos that correspond to the accumulators.
      int[] docSet = Accumulator.accumulatorsToDocnos(fbResults);

      // Get document vectors for results.
      IntDocVector[] docVecs = env.documentVectors(docSet);

      // Extract vocabulary from results.
      VocabFrequencyPair[] vocab = null;
      try {
        vocab = getVocabulary(docVecs, curGramSize);
      } catch (IOException e) {
        throw new RuntimeException("Error: Unable to fetch the vocabulary!");
      }

      // Priority queue for the concepts associated with this builder.
      PriorityQueue<Accumulator> sortedConcepts = new PriorityQueue<Accumulator>();

      // Score each concept.
      for (int conceptID = 0; conceptID < vocab.length; conceptID++) {
        if (maxCandidates > 0 && conceptID >= maxCandidates) {
          break;
        }

        // The current concept.
        String concept = vocab[conceptID].getKey();

        String[] concepts = concept.split(" ");
        MarkovRandomField conceptMRF = curBuilder.buildMRF(concepts);

        MRFDocumentRanker ranker = new MRFDocumentRanker(conceptMRF, docSet, docSet.length);
        Accumulator[] conceptResults = ranker.rank();
        Arrays.sort(conceptResults, new Accumulator.DocnoComparator());

        float score = 0.0f;
        for (int i = 0; i < conceptResults.length; i++) {
          if (fbResults[i].docno != conceptResults[i].docno) {
            throw new RetrievalException("Error: Mismatch occured in getExpandedMRF!");
          }
          score += Math.exp(fbResults[i].score + conceptResults[i].score);
        }

        int size = sortedConcepts.size();
        if (size < curFbTerms || sortedConcepts.peek().score < score) {
          if (size == curFbTerms) {
            sortedConcepts.poll(); // Remove worst concept.
          }
          sortedConcepts.add(new Accumulator(conceptID, score));
        }
      }

      // Compute the weights of the expanded terms.
      int numTerms = Math.min(curFbTerms, sortedConcepts.size());
      float totalWt = 0.0f;
      Accumulator[] bestConcepts = new Accumulator[numTerms];
      for (int i = 0; i < numTerms; i++) {
        Accumulator a = sortedConcepts.poll();
        bestConcepts[i] = a;
        totalWt += a.score;
      }

      // Add cliques corresponding to best expansion concepts.
      for (int i = 0; i < numTerms; i++) {
        Accumulator a = bestConcepts[i];

        // Construct the MRF corresponding to this concept.
        String[] concepts = vocab[a.docno].getKey().split(" ");
        MarkovRandomField conceptMRF = curBuilder.buildMRF(concepts);

        // Normalized score.
        float normalizedScore = a.score / totalWt;

        // Add cliques.
View Full Code Here

      Node modelNode = models.get(modelID);
      Node expanderNode = expanders.get(modelID);

      // Initialize retrieval environment variables.
      QueryRunner runner = null;
      MRFBuilder builder = null;
      MRFExpander expander = null;
      try {
        // Get the MRF builder.
        builder = MRFBuilder.get(env, modelNode.cloneNode(true));
View Full Code Here

     // compute features for each model
     for(String modelName : modelNames) {
       // build mrf from model node
       Node modelNode = runner.getModel(modelName);
       MRFBuilder builder = MRFBuilder.get(env, modelNode);
       MarkovRandomField mrf = builder.buildMRF(queryText.split("\\s+"));

       // get mrf cliques
      List<Clique> cliques = mrf.getCliques();

      // add parameter name to feature name set
      for(Clique c : cliques) {
        // parameter id
        String paramId = c.getParameter().getName();

        // handle linear importance model weights
        if(importanceModels.size() != 0) {
          for(LinearImportanceModel model : linearImportanceModels) {
            List<MetaFeature> metaFeatures = model.getMetaFeatures();

            for(MetaFeature metaFeat : metaFeatures) {
              // feature id = modelName-metaFeatId-paramId
              String featId = modelName + "-" + metaFeat.getName() + "-" + paramId;
              featureNames.add(featId);
            }
          }
        }

        // feature id = modelName-paramId
        String featId = modelName + "-" + paramId;

        featureNames.add(featId);
      }
     }
   }

   // add judgment feature name
   featureNames.add(JUDGMENT_FEATURE_NAME);

   // print feature name header
   System.out.print(QUERY_FEATURE_NAME + "\t" + DOC_FEATURE_NAME);
   for(String featureName : featureNames) {
     System.out.print("\t" + featureName);
   }
   System.out.println();

   // extract features query-by-query
   for(Entry<String, String> queryEntry : queries.entrySet()) {
     // feature map (docname -> feature name -> feature value)
     SortedMap<String,SortedMap<String,Double>> featureValues = new TreeMap<String,SortedMap<String,Double>>();

     // query id and text
     String qid = queryEntry.getKey();
     String queryText = queryEntry.getValue();

     // compute features for each model
     for(String modelName : modelNames) {
       // build mrf from model node
       Node modelNode = runner.getModel(modelName);
       MRFBuilder builder = MRFBuilder.get(env, modelNode);
       MarkovRandomField mrf = builder.buildMRF(queryText.split("\\s+"));

       // initialize mrf
       mrf.initialize();

       // get mrf cliques
View Full Code Here

     // compute features for each model
     for(String modelName : modelNames) {
       // build mrf from model node
       Node modelNode = runner.getModel(modelName);
       MRFBuilder builder = MRFBuilder.get(env, modelNode);
       MarkovRandomField mrf = builder.buildMRF(queryText.split("\\s+"));

       // get mrf cliques
      List<Clique> cliques = mrf.getCliques();

      // add parameter name to feature name set
      for(Clique c : cliques) {
        // parameter id
        String paramId = c.getParameter().getName();

        // handle linear importance model weights
        if(importanceModels.size() != 0) {
          for(LinearImportanceModel model : linearImportanceModels) {
            List<MetaFeature> metaFeatures = model.getMetaFeatures();

            for(MetaFeature metaFeat : metaFeatures) {
              // feature id = modelName-metaFeatId-paramId
              String featId = modelName + "-" + metaFeat.getName() + "-" + paramId;
              featureNames.add(featId);
            }
          }
        }

        // feature id = modelName-paramId
        String featId = modelName + "-" + paramId;

        featureNames.add(featId);
      }
     }
   }

   // add judgment feature name
   featureNames.add(JUDGMENT_FEATURE_NAME);

   // print feature name header
   System.out.print(QUERY_FEATURE_NAME + "\t" + DOC_FEATURE_NAME);
   for(String featureName : featureNames) {
     System.out.print("\t" + featureName);
   }
   System.out.println();

   // extract features query-by-query
   for(Entry<String, String> queryEntry : queries.entrySet()) {
     // feature map (docname -> feature name -> feature value)
     SortedMap<String,SortedMap<String,Operator>> featureValues = new TreeMap<String,SortedMap<String,Operator>>();

     // query id and text
     String qid = queryEntry.getKey();
     String queryText = queryEntry.getValue();

     // compute features for each model
     for(String modelName : modelNames) {
       // build mrf from model node
       Node modelNode = runner.getModel(modelName);
       MRFBuilder builder = MRFBuilder.get(env, modelNode);
       MarkovRandomField mrf = builder.buildMRF(queryText.split("\\s+"));

       // initialize mrf
       mrf.initialize();

       // get mrf cliques
View Full Code Here

      Node modelNode = models.get(modelID);
      Node expanderNode = expanders.get(modelID);

      // Initialize retrieval environment variables.
      QueryRunner runner = null;
      MRFBuilder builder = null;
      MRFExpander expander = null;
      try {
        // Get the MRF builder.
        builder = MRFBuilder.get(env, modelNode.cloneNode(true));
View Full Code Here

TOP

Related Classes of ivory.smrf.model.builder.MRFBuilder

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.