Examples of IdentityScaling


Examples of de.lmu.ifi.dbs.elki.utilities.scaling.IdentityScaling

    final ScalingFunction innerScaling;
    // If we have useful (finite) min/max, use these for binning.
    double min = scaling.getMin();
    double max = scaling.getMax();
    if(Double.isInfinite(min) || Double.isNaN(min) || Double.isInfinite(max) || Double.isNaN(max)) {
      innerScaling = new IdentityScaling();
      // TODO: does the outlier score give us this guarantee?
      logger.warning("JudgeOutlierScores expects values between 0.0 and 1.0, but we don't have such a guarantee by the scaling function: min:" + min + " max:" + max);
    }
    else {
      if(min == 0.0 && max == 1.0) {
        innerScaling = new IdentityScaling();
      }
      else {
        innerScaling = new LinearScaling(1.0 / (max - min), -min);
      }
    }
View Full Code Here

Examples of de.lmu.ifi.dbs.elki.utilities.scaling.IdentityScaling

    final ScalingFunction innerScaling;
    // If we have useful (finite) min/max, use these for binning.
    double min = scaling.getMin();
    double max = scaling.getMax();
    if(Double.isInfinite(min) || Double.isNaN(min) || Double.isInfinite(max) || Double.isNaN(max)) {
      innerScaling = new IdentityScaling();
      // TODO: does the outlier score give us this guarantee?
      logger.warning("JudgeOutlierScores expects values between 0.0 and 1.0, but we don't have such a guarantee by the scaling function: min:" + min + " max:" + max);
    }
    else {
      if(min == 0.0 && max == 1.0) {
        innerScaling = new IdentityScaling();
      }
      else {
        innerScaling = new LinearScaling(1.0 / (max - min), -min);
      }
    }
View Full Code Here

Examples of de.lmu.ifi.dbs.elki.utilities.scaling.IdentityScaling

    }

    // Label outlier result (reference)
    {
      OutlierResult bylabelresult = bylabel.run(database);
      writeResult(fout, ids, bylabelresult, new IdentityScaling(), "bylabel");
    }
    // No/all outliers "results"
    {
      OutlierResult noresult = (new TrivialNoOutlier()).run(database);
      writeResult(fout, ids, noresult, new IdentityScaling(), "no-outliers");
      OutlierResult allresult = (new TrivialAllOutlier()).run(database);
      writeResult(fout, ids, allresult, new IdentityScaling(), "all-outliers");
    }

    // KNN
    logger.verbose("Running KNN");
    runForEachK(new AlgRunner() {
      @Override
      public void run(int k, String kstr) {
        KNNOutlier<O, D> knn = new KNNOutlier<O, D>(distf, k);
        OutlierResult knnresult = knn.run(database, relation);
        // Setup scaling
        StandardDeviationScaling scaling = new StandardDeviationScaling();
        scaling.prepare(knnresult);
        writeResult(fout, ids, knnresult, scaling, "KNN-" + kstr);
        detachResult(database, knnresult);
      }
    });
    // KNN Weight
    logger.verbose("Running KNNweight");
    runForEachK(new AlgRunner() {
      @Override
      public void run(int k, String kstr) {
        KNNWeightOutlier<O, D> knnw = new KNNWeightOutlier<O, D>(distf, k);
        OutlierResult knnresult = knnw.run(database, relation);
        // Setup scaling
        StandardDeviationScaling scaling = new StandardDeviationScaling();
        scaling.prepare(knnresult);
        writeResult(fout, ids, knnresult, scaling, "KNNW-" + kstr);
        detachResult(database, knnresult);
      }
    });
    // Run LOF
    logger.verbose("Running LOF");
    runForEachK(new AlgRunner() {
      @Override
      public void run(int k, String kstr) {
        LOF<O, D> lof = new LOF<O, D>(k, distf, distf);
        OutlierResult lofresult = lof.run(relation);
        // Setup scaling
        StandardDeviationScaling scaling = new StandardDeviationScaling(1.0, 1.0);
        scaling.prepare(lofresult);
        writeResult(fout, ids, lofresult, scaling, "LOF-" + kstr);
        detachResult(database, lofresult);
      }
    });
    // LoOP
    logger.verbose("Running LoOP");
    runForEachK(new AlgRunner() {
      @Override
      public void run(int k, String kstr) {
        LoOP<O, D> loop = new LoOP<O, D>(k, k, distf, distf, 1.0);
        OutlierResult loopresult = loop.run(database, relation);
        writeResult(fout, ids, loopresult, new IdentityScaling(), "LOOP-" + kstr);
        detachResult(database, loopresult);
      }
    });
    // LDOF
    logger.verbose("Running LDOF");
View Full Code Here
TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.