super.close();
if(label2model != null) {
long numForwarded = 0L;
long numMixed = 0L;
if(useCovariance()) {
final WeightValueWithCovar probe = new WeightValueWithCovar();
final Object[] forwardMapObj = new Object[4];
final FloatWritable fv = new FloatWritable();
final FloatWritable cov = new FloatWritable();
for(Map.Entry<Object, PredictionModel> entry : label2model.entrySet()) {
Object label = entry.getKey();
forwardMapObj[0] = label;
PredictionModel model = entry.getValue();
numMixed += model.getNumMixed();
IMapIterator<Object, IWeightValue> itor = model.entries();
while(itor.next() != -1) {
itor.getValue(probe);
if(!probe.isTouched()) {
continue; // skip outputting untouched weights
}
Object k = itor.getKey();
fv.set(probe.get());
cov.set(probe.getCovariance());
forwardMapObj[1] = k;
forwardMapObj[2] = fv;
forwardMapObj[3] = cov;
forward(forwardMapObj);
numForwarded++;
}
}
} else {
final WeightValue probe = new WeightValue();
final Object[] forwardMapObj = new Object[3];
final FloatWritable fv = new FloatWritable();
for(Map.Entry<Object, PredictionModel> entry : label2model.entrySet()) {
Object label = entry.getKey();
forwardMapObj[0] = label;
PredictionModel model = entry.getValue();
numMixed += model.getNumMixed();
IMapIterator<Object, IWeightValue> itor = model.entries();
while(itor.next() != -1) {
itor.getValue(probe);
if(!probe.isTouched()) {
continue; // skip outputting untouched weights
}
Object k = itor.getKey();
fv.set(probe.get());
forwardMapObj[1] = k;
forwardMapObj[2] = fv;
forward(forwardMapObj);
numForwarded++;
}