Examples of GaussianRandomGenerator


Examples of org.apache.commons.math.random.GaussianRandomGenerator

        DifferentiableMultivariateVectorialOptimizer underlyingOptimizer =
            new GaussNewtonOptimizer(true);
        JDKRandomGenerator g = new JDKRandomGenerator();
        g.setSeed(12373523445l);
        RandomVectorGenerator generator =
            new UncorrelatedRandomVectorGenerator(1, new GaussianRandomGenerator(g));
        MultiStartDifferentiableMultivariateVectorialOptimizer optimizer =
            new MultiStartDifferentiableMultivariateVectorialOptimizer(underlyingOptimizer,
                                                                       10, generator);
        optimizer.setMaxIterations(100);
        optimizer.setConvergenceChecker(new SimpleVectorialValueChecker(1.0e-6, 1.0e-6));
View Full Code Here

Examples of org.apache.commons.math.random.GaussianRandomGenerator

  @Override
  public Iterator<List<StoreFile>> iterator() {
    return new Iterator<List<StoreFile>>() {
      private GaussianRandomGenerator gen =
          new GaussianRandomGenerator(new MersenneTwister(random.nextInt()));
      private int count = 0;

      @Override
      public boolean hasNext() {
        return count < MAX_FILE_GEN_ITERS;
      }

      @Override
      public List<StoreFile> next() {
        count += 1;
        ArrayList<StoreFile> files = new ArrayList<StoreFile>(NUM_FILES_GEN);
        for (int i = 0; i < NUM_FILES_GEN; i++) {
          files.add(createMockStoreFile(
              (int) Math.ceil(Math.max(0, gen.nextNormalizedDouble() * 32 + 32)))
          );
        }

        return files;
      }
View Full Code Here

Examples of org.apache.commons.math3.random.GaussianRandomGenerator

            });
        underlying.setSimplex(simplex);
        JDKRandomGenerator g = new JDKRandomGenerator();
        g.setSeed(16069223052l);
        RandomVectorGenerator generator =
            new UncorrelatedRandomVectorGenerator(2, new GaussianRandomGenerator(g));
        MultivariateMultiStartOptimizer optimizer =
            new MultivariateMultiStartOptimizer(underlying, 10, generator);
        PointValuePair optimum =
            optimizer.optimize(1100, rosenbrock, GoalType.MINIMIZE, new double[] { -1.2, 1.0 });
View Full Code Here

Examples of org.apache.commons.math3.random.GaussianRandomGenerator

        };
        JDKRandomGenerator g = new JDKRandomGenerator();
        g.setSeed(753289573253l);
        RandomVectorGenerator generator =
            new UncorrelatedRandomVectorGenerator(new double[] { 50.0, 50.0 }, new double[] { 10.0, 10.0 },
                                                  new GaussianRandomGenerator(g));
        MultivariateDifferentiableMultiStartOptimizer optimizer =
            new MultivariateDifferentiableMultiStartOptimizer(underlying, 10, generator);
        PointValuePair optimum =
            optimizer.optimize(200, circle, GoalType.MINIMIZE, new double[] { 98.680, 47.345 });
        Assert.assertEquals(200, optimizer.getMaxEvaluations());
View Full Code Here

Examples of org.apache.commons.math3.random.GaussianRandomGenerator

            }
        };
        JDKRandomGenerator g = new JDKRandomGenerator();
        g.setSeed(16069223052l);
        RandomVectorGenerator generator =
            new UncorrelatedRandomVectorGenerator(1, new GaussianRandomGenerator(g));
        MultivariateDifferentiableVectorMultiStartOptimizer optimizer =
            new MultivariateDifferentiableVectorMultiStartOptimizer(underlyingOptimizer,
                                                                       10, generator);

        // no optima before first optimization attempt
View Full Code Here

Examples of org.apache.commons.math3.random.GaussianRandomGenerator

            }
        };
        JDKRandomGenerator g = new JDKRandomGenerator();
        g.setSeed(12373523445l);
        RandomVectorGenerator generator =
            new UncorrelatedRandomVectorGenerator(1, new GaussianRandomGenerator(g));
        MultivariateDifferentiableVectorMultiStartOptimizer optimizer =
            new MultivariateDifferentiableVectorMultiStartOptimizer(underlyingOptimizer,
                                                                       10, generator);
        optimizer.optimize(100, new MultivariateDifferentiableVectorFunction() {
            public double[] value(double[] point) {
View Full Code Here

Examples of org.apache.commons.math3.random.GaussianRandomGenerator

        JacobianMultivariateVectorOptimizer underlyingOptimizer
            = new GaussNewtonOptimizer(true, new SimpleVectorValueChecker(1e-6, 1e-6));
        JDKRandomGenerator g = new JDKRandomGenerator();
        g.setSeed(16069223052l);
        RandomVectorGenerator generator
            = new UncorrelatedRandomVectorGenerator(1, new GaussianRandomGenerator(g));
        MultiStartMultivariateVectorOptimizer optimizer
            = new MultiStartMultivariateVectorOptimizer(underlyingOptimizer, 10, generator);

        optimizer.getOptima();
    }
View Full Code Here

Examples of org.apache.commons.math3.random.GaussianRandomGenerator

        JacobianMultivariateVectorOptimizer underlyingOptimizer
            = new GaussNewtonOptimizer(true, new SimpleVectorValueChecker(1e-6, 1e-6));
        JDKRandomGenerator g = new JDKRandomGenerator();
        g.setSeed(16069223052l);
        RandomVectorGenerator generator
            = new UncorrelatedRandomVectorGenerator(1, new GaussianRandomGenerator(g));
        MultiStartMultivariateVectorOptimizer optimizer
            = new MultiStartMultivariateVectorOptimizer(underlyingOptimizer, 10, generator);

        PointVectorValuePair optimum
            = optimizer.optimize(new MaxEval(100),
View Full Code Here

Examples of org.apache.commons.math3.random.GaussianRandomGenerator

            }
        };
        JDKRandomGenerator g = new JDKRandomGenerator();
        g.setSeed(16069223052l);
        RandomVectorGenerator generator =
                new UncorrelatedRandomVectorGenerator(1, new GaussianRandomGenerator(g));
        MultiStartMultivariateVectorOptimizer optimizer =
                new MultiStartMultivariateVectorOptimizer(underlyingOptimizer, 10, generator);

        optimizer.optimize(new MaxEval(100),
                           problem.getModelFunction(),
View Full Code Here

Examples of org.apache.commons.math3.random.GaussianRandomGenerator

        JacobianMultivariateVectorOptimizer underlyingOptimizer
            = new GaussNewtonOptimizer(true, new SimpleVectorValueChecker(1e-6, 1e-6));
        JDKRandomGenerator g = new JDKRandomGenerator();
        g.setSeed(12373523445l);
        RandomVectorGenerator generator
            = new UncorrelatedRandomVectorGenerator(1, new GaussianRandomGenerator(g));
        MultiStartMultivariateVectorOptimizer optimizer
            = new MultiStartMultivariateVectorOptimizer(underlyingOptimizer, 10, generator);
        optimizer.optimize(new MaxEval(100),
                           new Target(new double[] { 0 }),
                           new Weight(new double[] { 1 }),
View Full Code Here
TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.