Examples of GaussianArHpHmmPLFilter


Examples of plm.hmm.gaussian.GaussianArHpHmmPLFilter

    final MultivariateGaussian phiPrior2 = new MultivariateGaussian(phiMean2, phiCov2);
   
    List<MultivariateGaussian> priorPhis = Lists.newArrayList(phiPrior1, phiPrior2);

    final HmmPlFilter<DlmHiddenMarkovModel, GaussianArHpTransitionState, Vector> wfFilter =
        new GaussianArHpHmmPLFilter(trueHmm1, sigmaPrior, priorPhis, random, true);


    final String path;
    if (args.length == 0)
      path = ".";
    else
      path = args[0];
    String outputFilename = path + "/hmm-nar-wf-rs-10000-class-errors-m1.csv";

    final int K = 5;
    final int T = 700;
    final int N = 1000;

    /*
     * Note: replications are over the same set of simulated observations.
     */
    List<SimHmmObservedValue<Vector, Vector>> simulation = trueHmm1.sample(random, T);

    wfFilter.setNumParticles(N);
    wfFilter.setResampleOnly(false);

    CSVWriter writer = new CSVWriter(new FileWriter(outputFilename), ',');
    String[] header = "rep,t,filter.type,measurement.type,resample.type,measurement".split(",");
    writer.writeNext(header);

    GaussianArHmmClassEvaluator wfClassEvaluator = new GaussianArHmmClassEvaluator("wf-pl",
        writer);
    GaussianArHmmRmseEvaluator wfRmseEvaluator = new GaussianArHmmRmseEvaluator("wf-pl",
        writer);
    GaussianArHmmPsiLearningEvaluator wfPsiEvaluator = new GaussianArHmmPsiLearningEvaluator("wf-pl",
        truePsis, writer);

    RingAccumulator<MutableDouble> wfLatency =
        new RingAccumulator<MutableDouble>();
    Stopwatch wfWatch = new Stopwatch();


    for (int k = 0; k < K; k++) {
      log.info("Processing replication " + k);
      CountedDataDistribution<GaussianArHpTransitionState> wfDistribution =
          (CountedDataDistribution<GaussianArHpTransitionState>) wfFilter.getUpdater().createInitialParticles(N);


      final long numPreRuns = -1l;//wfDistribution.getMaxValueKey().getTime();
     
      /*
       * Recurse through the particle filter
       */
      for (int i = 0; i < T; i++) {
 
        final double x = simulation.get(i).getClassId();
        final Vector y = simulation.get(i).getObservedValue();

        if (i > numPreRuns) {

          if (i > 0) {
            wfWatch.reset();
            wfWatch.start();
            wfFilter.update(wfDistribution, simulation.get(i));
            wfWatch.stop();
            final long latency = wfWatch.elapsed(TimeUnit.MILLISECONDS);
            wfLatency.accumulate(new MutableDouble(latency));
            writer.writeNext(new String[] {
                Integer.toString(k), Integer.toString(i),
View Full Code Here
TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.