// [8.59142, 3.1430812] - bias l2
// [12.749131, -12.848652] - l2-l3
// [-6.1552725] - bias l3
// weights
FullyConnected fc1 = (FullyConnected) mlp.getInputLayer().getConnections().get(0);
fc1.getWeights().set(-5.744886f, 0, 0);
fc1.getWeights().set(-5.7570715f, 0, 1);
fc1.getWeights().set(-7.329507f, 1, 0);
fc1.getWeights().set(-7.33055f, 1, 1);
FullyConnected b1 = (FullyConnected) fc1.getOutputLayer().getConnections().get(1);
b1.getWeights().set(8.59142f, 0, 0);
b1.getWeights().set(3.1430812f, 1, 0);
FullyConnected fc2 = (FullyConnected) mlp.getOutputLayer().getConnections().get(0);
fc2.getWeights().set(12.749131f, 0, 0);
fc2.getWeights().set(-12.848652f, 0, 1);
FullyConnected b2 = (FullyConnected) fc2.getOutputLayer().getConnections().get(1);
b2.getWeights().set(-6.1552725f, 0, 0);
// create training and testing input providers
SimpleInputProvider input = new SimpleInputProvider(new float[][] { {0, 0}, {0, 1}, {1, 0}, {1, 1} }, new float[][] { {0}, {1}, {1}, {0} });
// create backpropagation trainer for the network