Package flanagan.math

Examples of flanagan.math.ArrayMaths


                yTransform[i] = (Math.pow(shiftedData[i], x[0]) - 1.0)/x[0];
             }
        }

        // Sort transformed array into ascending order
        am = new ArrayMaths(yTransform);
        am = am.sort();
        yTransform = am.array();

        // Calculate and return probability plot correlation coefficient
        reg = new Regression(gaussianOrderMedians, yTransform);
View Full Code Here


        // Calculate Gaussian N[0,1] order statistic medians
        this.gaussianOrderMedians = Stat.gaussianOrderStatisticMedians(this.nData);

        // calculate the correlation coefficient of the probability plot for the untransformed data
        Regression reg = new Regression(this.gaussianOrderMedians, ((new ArrayMaths(this.standardizedOriginalData)).sort().array()));
        reg.linear();
        this.originalSampleR = reg.getSampleR();
        double[] coeff = reg.getBestEstimates();
        this.originalIntercept = coeff[0];
        this.originalGradient = coeff[1];
View Full Code Here

    }

    // Return ordered transformed data
    public double[] orderedTransformedData(){
        if(!this.transformDone)this.transform();
        ArrayMaths am = new ArrayMaths(this.transformedData);
        double[] ordered = (am.sort()).array();
        return ordered;
    }
View Full Code Here

    public void transformedProbabilityPlot(){
        if(!this.transformDone)this.transform();

        double[][] data = PlotGraph.data(2,this.nData);
        data[0] = this.gaussianOrderMedians;
        data[1] = ((new ArrayMaths(this.standardizedTransformedData)).sort()).array();

        data[2] = this.gaussianOrderMedians;
        for(int i=0; i<this.nData; i++){
            data[3][i] = this.transformedIntercept + this.transformedGradient*this.gaussianOrderMedians[i];
        }
View Full Code Here

    // Gaussian probabilty plot of the standardized original data
    public void originalProbabilityPlot(){
        double[][] data = PlotGraph.data(2,this.nData);
        data[0] = this.gaussianOrderMedians;
        data[1] = ((new ArrayMaths(this.standardizedOriginalData)).sort()).array();
        data[2] = this.gaussianOrderMedians;
        for(int i=0; i<this.nData; i++){
            data[3][i] = this.originalIntercept + this.originalGradient*this.gaussianOrderMedians[i];
        }
        PlotGraph pg = new PlotGraph(data);
View Full Code Here

    }

    public RankAnalysis(float[][] values, float[] errors){
        Matrix matv = new Matrix(values);
        this.values = matv.getArrayCopy();
        ArrayMaths ame = new ArrayMaths(errors);
        this.errors = this.oneToTwo(ame.array(), this.values[0].length);
        this.errorType = 1;
        this.preprocessDataOne();
    }
View Full Code Here


    public RankAnalysis(long[][] values, long[] errors){
        Matrix matv = new Matrix(values);
        this.values = matv.getArrayCopy();
        ArrayMaths ame = new ArrayMaths(errors);
        this.errors = this.oneToTwo(ame.array(), this.values[0].length);
        this.errorType = 1;
        this.preprocessDataOne();
    }
View Full Code Here

    }

    public RankAnalysis(int[][] values, int[] errors){
        Matrix matv = new Matrix(values);
        this.values = matv.getArrayCopy();
        ArrayMaths ame = new ArrayMaths(errors);
        this.errors = this.oneToTwo(ame.array(), this.values[0].length);
        this.errorType = 1;
        this.preprocessDataOne();
    }
View Full Code Here

    }

    public RankAnalysis(BigDecimal[][] values, BigDecimal[] errors){
        Matrix matv = new Matrix(values);
        this.values = matv.getArrayCopy();
        ArrayMaths ame = new ArrayMaths(errors);
        this.errors = this.oneToTwo(ame.array(), this.values[0].length);
        this.errorType = 1;
        this.preprocessDataOne();
    }
View Full Code Here

    }

    public RankAnalysis(BigInteger[][] values, BigInteger[] errors){
        Matrix matv = new Matrix(values);
        this.values = matv.getArrayCopy();
        ArrayMaths ame = new ArrayMaths(errors);
        this.errors = this.oneToTwo(ame.array(), this.values[0].length);
        this.errorType = 1;
        this.preprocessDataOne();
    }
View Full Code Here

TOP

Related Classes of flanagan.math.ArrayMaths

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.