+"confidence)",
stringZeroAsMissing = "\tTreat zero (i.e. first value of nominal attributes) as " +
"missing";
FastVector newVector = new FastVector(11);
newVector.addElement(new Option(string1, "N", 1,
"-N <required number of rules output>"));
newVector.addElement(new Option(stringType, "T", 1,
"-T <0=confidence | 1=lift | "
+"2=leverage | 3=Conviction>"));
newVector.addElement(new Option(string2, "C", 1,
"-C <minimum metric score of a rule>"));
newVector.addElement(new Option(string3 + string4, "D", 1,
"-D <delta for minimum support>"));
newVector.addElement(new Option("\tUpper bound for minimum support. "
+"(default = 1.0)", "U", 1,
"-U <upper bound for minimum support>"));
newVector.addElement(new Option(string5, "M", 1,
"-M <lower bound for minimum support>"));
newVector.addElement(new Option(string6 + string7, "S", 1,
"-S <significance level>"));
newVector.addElement(new Option(string8, "I", 0,
"-I"));
newVector.addElement(new Option("\tRemove columns that contain "
+"all missing values (default = no)"
, "R", 0,
"-R"));
newVector.addElement(new Option("\tReport progress iteratively. (default "
+"= no)", "V", 0,
"-V"));
newVector.addElement(new Option(string9, "A", 0,
"-A"));
newVector.addElement(new Option(stringZeroAsMissing, "Z", 0,
"-Z"));
newVector.addElement(new Option(string10, "c", 1,
"-c <the class index>"));
return newVector.elements();
}