Examples of EvaluationOptions


Examples of ch.idsia.tools.EvaluationOptions

        // System.out.println(inputs.length+" "+inputs[0].length);
        // System.out.println(recurrent.length+" "+recurrent[0].length);
        // System.out.println(output.length+" "+output[0].length);
        SRN srn = new SRN (inputs, recurrent, output, recurrent.length, output[0].length);
        Agent agent = new LargeSRNAgent(srn);
        EvaluationOptions options = new CmdLineOptions(new String[0]);
        final int startingSeed = 0;
        options.setLevelRandSeed(seed);
        options.setMaxAttempts(1);
        options.setVisualization(false);
        options.setMaxFPS(true);
        options.setLevelDifficulty(level);
        options.setPauseWorld(false);
        agent.reset();
        options.setAgent(agent);
        Evaluator evaluator = new Evaluator (options);
        EvaluationInfo result = evaluator.evaluate().get(0);
       // System.out.print(".");
        double score = result.computeDistancePassed();
         System.out.println("score: " +score);
View Full Code Here

Examples of ch.idsia.tools.EvaluationOptions

    final static int generations = 100;
    final static int populationSize = 100;

    public static void main(String[] args) {
        EvaluationOptions options = new CmdLineOptions(new String[0]);
        options.setMaxAttempts(1);
        options.setPauseWorld(false);
        Evolvable initial = new SmallMLPAgent();
        RegisterableAgent.registerAgent ((Agent) initial);
        options.setMaxFPS(true);
        options.setVisualization(false);
        MultiDifficultyProgressTask task = new MultiDifficultyProgressTask(options);

        ES es = new ES (task, initial, populationSize);
        System.out.println("Evolving " + initial + " with task " + task);
        final String fileName = "evolved" + (int) (Math.random () * Integer.MAX_VALUE) + ".xml";
View Full Code Here

Examples of ch.idsia.tools.EvaluationOptions

    final static int repetitions = 10;

    public static void main(String[] args) {
        Agent controller = RegisterableAgent.load (args[0]);
        RegisterableAgent.registerAgent (controller);
        EvaluationOptions options = new CmdLineOptions(new String[0]);
        options.setAgent(controller);
        options.setPauseWorld (false);
        Task task = new ProgressTask(options);
        options.setMaxFPS(true);
        options.setVisualization(false);     
        options.setMaxAttempts(1);
        options.setMatlabFileName("");
        task.setOptions(options);
        for (int i = 0; i < repetitions; i++) {
            System.out.println ("Score: " + task.evaluate (controller)[0]);
        }
    }
View Full Code Here

Examples of ch.idsia.tools.EvaluationOptions

        // System.out.println(inputs.length+" "+inputs[0].length);
        // System.out.println(recurrent.length+" "+recurrent[0].length);
        // System.out.println(output.length+" "+output[0].length);
        SRN srn = new SRN (inputs, recurrent, output, recurrent.length, output[0].length);
        Agent agent = new LargeSRNAgent(srn);
        EvaluationOptions options = new CmdLineOptions(new String[0]);
        options.setLevelRandSeed(seed);
        options.setMaxAttempts(1);
        options.setVisualization(true);
        options.setMaxFPS(false);
        options.setLevelDifficulty(level);
        options.setPauseWorld(false);
        agent.reset();
        options.setAgent(agent);
        Evaluator evaluator = new Evaluator (options);
        EvaluationInfo result = evaluator.evaluate().get(0);
       // System.out.print(".");
        double score = result.computeDistancePassed();
         System.out.println("score: " +score);
View Full Code Here

Examples of ch.idsia.tools.EvaluationOptions

    final static int generations = 100;
    final static int populationSize = 100;
   

    public static void main(String[] args) {
        EvaluationOptions options = new CmdLineOptions(new String[0]);
        options.setMaxAttempts(1);
        options.setPauseWorld(false);
        Evolvable initial = new SimpleMLPAgent();
        RegisterableAgent.registerAgent ((Agent) initial);
        options.setMaxFPS(true);
        options.setLevelDifficulty(0);
        options.setVisualization(false);
        ProgressTask task = new ProgressTask(options);
        options.setLevelRandSeed((int) (Math.random () * Integer.MAX_VALUE));
        ES es = new ES (task, initial, populationSize);
        System.out.println("Evolving " + initial + " with task " + task);
        final String fileName = "evolved" + (int) (Math.random () * Integer.MAX_VALUE) + ".xml";
        for (int gen = 0; gen < generations; gen++) {
            es.nextGeneration();
View Full Code Here

Examples of ch.idsia.tools.EvaluationOptions

    final static int generations = 100;
    final static int populationSize = 100;


    public static void main(String[] args) {
        EvaluationOptions options = new CmdLineOptions(new String[0]);
        options.setMaxAttempts(1);
        Evolvable initial = new LargeSRNAgent();
        if (args.length > 0) {
            initial = (Evolvable) RegisterableAgent.load (args[0]);
        }
        RegisterableAgent.registerAgent ((Agent) initial);
        options.setMaxFPS(true);
        options.setPauseWorld(false);
        options.setVisualization(false);
        ProgressTask task = new ProgressTask(options);
        int seed = (int) (Math.random () * Integer.MAX_VALUE);
        ES es = new ES (task, initial, populationSize);
        System.out.println("Evolving " + initial + " with task " + task);
        int difficulty = 0;
        final String fileName = "evolved" + (int) (Math.random () * Integer.MAX_VALUE) + ".xml";
        options.setLevelRandSeed(seed);
        for (int gen = 0; gen < generations; gen++) {
            es.nextGeneration();
            double bestResult = es.getBestFitnesses()[0];
            System.out.println("Generation " + gen + " diff " + difficulty + "  best " + bestResult);
            Easy.save (es.getBests()[0], fileName);
            if (bestResult > 4000) {
                difficulty++;
                options.setLevelDifficulty(difficulty);
                options.setLevelRandSeed(seed);
            }
        }
        Stats.main(new String[]{fileName, "0"});
        System.out.println("\n\n\n\n\n\n\n\n\n");
    }
View Full Code Here

Examples of ch.idsia.tools.EvaluationOptions

    }

    public static void doStats (Agent agent, int startingSeed) {
        TimingAgent controller = new TimingAgent (agent);
        RegisterableAgent.registerAgent (controller);
        EvaluationOptions options = new CmdLineOptions(new String[0]);

        options.setMaxAttempts(1);
        options.setVisualization(false);
        options.setMaxFPS(true);
        options.setLevelLength(100000);
        System.out.println("Testing controller " + controller + " with starting seed " + startingSeed);

        double competitionScore = 0;

//        competitionScore += testConfig (controller, options, startingSeed, 0, true);
View Full Code Here

Examples of ch.idsia.tools.EvaluationOptions

     
      GlobalOptions.currentController = controller.getName();
      GlobalOptions.writeFrames = false; //set to true to write frames to disk
      GlobalOptions.TimerOn = false;
      GlobalOptions.dontResetWindowPosition = true;
      EvaluationOptions options = new CmdLineOptions(new String[0]);
      options.setAgent(controller);
      Task task = new ProgressTask(options);
      options.setMaxFPS(false);
      options.setVisualization(true);
      options.setMaxAttempts(1);
      options.setMatlabFileName("");
      options.setLevelLength(length);
      options.setLevelRandSeed(seed);
      options.setLevelDifficulty(difficulty);
      options.setTimeLimit(0);
     
      task.setOptions(options);

      System.out.println("Score: " + ArrayUtils.toString(task.evaluate(controller)));
      System.out.println("Seed: " + options.getLevelRandSeed());
      System.out.println("Difficulty: " + options.getLevelDifficulty());
      seed++;
    }
  }
View Full Code Here

Examples of ch.idsia.tools.EvaluationOptions

    final static int generations = 100;
    final static int populationSize = 100;


    public static void main(String[] args) {
        EvaluationOptions options = new CmdLineOptions(new String[0]);
        options.setMaxAttempts(1);
        options.setPauseWorld(true);
        Evolvable initial = new SimpleMLPAgent();
        if (args.length > 0) {
            initial = (Evolvable) RegisterableAgent.load (args[0]);           
        }
        RegisterableAgent.registerAgent ((Agent) initial);
        for (int difficulty = 0; difficulty < 11; difficulty++)
        {
            System.out.println("New EvolveIncrementally phase with difficulty = " + difficulty + " started.");
            options.setLevelDifficulty(difficulty);
            options.setMaxFPS(true);
            options.setVisualization(false);
            //Task task = new ProgressTask(options);
            MultiSeedProgressTask task = new MultiSeedProgressTask(options);
            task.setNumberOfSeeds(3);
            task.setStartingSeed(0);
            ES es = new ES (task, initial, populationSize);
            System.out.println("Evolving " + initial + " with task " + task);
            for (int gen = 0; gen < generations; gen++) {
                es.nextGeneration();
                double bestResult = es.getBestFitnesses()[0];
                System.out.println("Generation " + gen + " best " + bestResult);
                options.setVisualization(gen % 5 == 0 || bestResult > 4000);
                options.setMaxFPS(true);
                Agent a = (Agent) es.getBests()[0];
                a.setName(((Agent)initial).getName() + gen);
                RegisterableAgent.registerAgent(a);
                double result = task.evaluate(a)[0];
                options.setVisualization(false);
                options.setMaxFPS(true);
                Easy.save (es.getBests()[0], "evolved.xml");
                if (result > 4000) {
                    initial = es.getBests()[0];
                    break; // Go to next difficulty.
                }
View Full Code Here

Examples of ch.idsia.tools.EvaluationOptions

        GeneticAgent controller = new GeneticAgent(seed); // This line uses the agent you imported above.
        /*if (args.length > 0) {
            controller = RegisterableAgent.load (args[0]);
            RegisterableAgent.registerAgent (controller);
        }*/
        EvaluationOptions options = new CmdLineOptions(new String[0]);
        //options.setAgent(controller);
        Task task = new ProgressTask(options);
        options.setMaxFPS(false);
        options.setVisualization(false);
        options.setMaxAttempts(1);
        options.setMatlabFileName("");
        options.setLevelRandSeed(seed);
        options.setLevelDifficulty(10);
        GlobalOptions.FPS = GlobalOptions.InfiniteFPS;
        task.setOptions(options);
       
        GA vivarium = new GA(task, new GeneticAgent(), 60);
       
        for (int i = 0; i < 30; i++)
        {
          System.out.println("Best of Gen " + i + ": " + vivarium.getBestFitnesses()[0]);
          vivarium.nextGeneration();
          System.out.flush();
        }

        System.out.println("Score: " + ArrayUtils.toString(task.evaluate(controller)));
        System.out.println("Seed: " + options.getLevelRandSeed());
        System.out.println("Difficulty: " + options.getLevelDifficulty());
        System.out.println("Best Genome: " + vivarium.getBests()[0]);
    }
View Full Code Here
TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.