Class for evaluating machine learning models. 
 ------------------------------------------------------------------- 
 General options when evaluating a learning scheme from the command-line: 
 -t filename 
 Name of the file with the training data. (required) 
 -T filename 
 Name of the file with the test data. If missing a cross-validation is performed. 
 -c index 
 Index of the class attribute (1, 2, ...; default: last). 
 -x number 
 The number of folds for the cross-validation (default: 10). 
 -no-cv 
 No cross validation. If no test file is provided, no evaluation is done. 
 -split-percentage percentage 
 Sets the percentage for the train/test set split, e.g., 66. 
 -preserve-order 
 Preserves the order in the percentage split instead of randomizing the data first with the seed value ('-s'). 
 -s seed 
 Random number seed for the cross-validation and percentage split (default: 1). 
 -m filename 
 The name of a file containing a cost matrix. 
 -l filename 
 Loads classifier from the given file. In case the filename ends with ".xml", a PMML file is loaded or, if that fails, options are loaded from XML. 
 -d filename 
 Saves classifier built from the training data into the given file. In case the filename ends with ".xml" the options are saved XML, not the model. 
 -v 
 Outputs no statistics for the training data. 
 -o 
 Outputs statistics only, not the classifier. 
 -i 
 Outputs information-retrieval statistics per class. 
 -k 
 Outputs information-theoretic statistics. 
 -classifications "weka.classifiers.evaluation.output.prediction.AbstractOutput + options" 
 Uses the specified class for generating the classification output. E.g.: weka.classifiers.evaluation.output.prediction.PlainText or : weka.classifiers.evaluation.output.prediction.CSV -p range 
 Outputs predictions for test instances (or the train instances if no test instances provided and -no-cv is used), along with the attributes in the specified range (and nothing else). Use '-p 0' if no attributes are desired. 
 Deprecated: use "-classifications ..." instead. 
 -distribution 
 Outputs the distribution instead of only the prediction in conjunction with the '-p' option (only nominal classes). 
 Deprecated: use "-classifications ..." instead. 
 -r 
 Outputs cumulative margin distribution (and nothing else). 
 -g 
 Only for classifiers that implement "Graphable." Outputs the graph representation of the classifier (and nothing else). 
 -xml filename | xml-string 
 Retrieves the options from the XML-data instead of the command line. 
 -threshold-file file 
 The file to save the threshold data to. The format is determined by the extensions, e.g., '.arff' for ARFF format or '.csv' for CSV. 
 -threshold-label label 
 The class label to determine the threshold data for (default is the first label) 
 ------------------------------------------------------------------- 
 Example usage as the main of a classifier (called FunkyClassifier): 
  public static void main(String [] args) { runClassifier(new FunkyClassifier(), args); }    ------------------------------------------------------------------ 
 Example usage from within an application: 
  Instances trainInstances = ... instances got from somewhere Instances testInstances = ... instances got from somewhere Classifier scheme = ... scheme got from somewhere Evaluation evaluation = new Evaluation(trainInstances); evaluation.evaluateModel(scheme, testInstances); System.out.println(evaluation.toSummaryString()); 
 
@author Eibe Frank (eibe@cs.waikato.ac.nz)
@author Len Trigg (trigg@cs.waikato.ac.nz)
@version $Revision: 7228 $