Examples of Evaluation


Examples of com.mobixess.jodb.soda.api.Evaluation

                } catch (Exception e) {
                    throw new JodbIOException(e);
                }
            }
            if(activeObject!=null){
                Evaluation evaluation = (Evaluation) getObject();
                CandidateImpl candidateImpl = _candidateImpl.get();
                candidateImpl.init(activeObject);
                evaluation.evaluate(candidateImpl);
                if(candidateImpl.isInclude()){
                    processCompareResult(COMPARE_RESULT.EQUAL);
                }else{
                    processCompareResult(COMPARE_RESULT.SMALLER);
                }
View Full Code Here

Examples of com.mobixess.jodb.soda.api.Evaluation

                Object obj = PrimitiveJavaTypesUtil.getAsWrappedPrimitive(fieldTypeEnum,record._primitiveRawDataBuffer);
                evaluateActiveObject(obj, null, context);
                return;
            }
            if(dataContainer!=null){
                Evaluation evaluation = (Evaluation) getObject();
                int activationDepth = evaluation.getActivationDepth() >= 0 ? evaluation.getActivationDepth() : JODBConfig.getDefaultActivationDepth();
                Object obj = context.getSession().getObjectForOffset(dataContainer.getOffset(), activationDepth);
                evaluateActiveObject(obj, null, context);
                return;
            }
        }
View Full Code Here

Examples of cross.reputation.model.Evaluation

          continue;
        }
        if(reputationMap.size() == 1 && community.getMetrics().size() == 1) {
          Metric metric = (Metric)community.getMetrics().toArray()[0];
          for(Object value : reputationMap.values()) {
            GlobalModel.addEvaluation(new Evaluation(community, entity,
                metric,value));
            System.out.println("Ent:"+entity.getUniqueIdentificator()+" Com: "
            +community.getName()+ " url:"+communityEntity.get(community).getUrl()
            +" met:"+metric.getIdentifier()+" rep:"+value);
          }
        } else {
          for(Metric metric : reputationMap.keySet()) {
            Metric sourceMetric = null;
            for(Metric comMetric : community.getMetrics()) {
              if(metric == null || !metric.getIdentifier().equalsIgnoreCase(
                  comMetric.getIdentifier())) {
                continue;                   
              }
              sourceMetric = comMetric;
              break;
            }
            if(sourceMetric == null) {             
              System.out.println("ERROR: metric parsed("+(metric==null?null:metric.getIdentifier())
                +") does not correspond to any metric of the community("+community.getName()+
                "):"+community.getMetrics()+". Its score is ignored");
              continue;
            }
            GlobalModel.addEvaluation(new Evaluation(community,
                entity,sourceMetric,reputationMap.get(metric)));
            System.out.println("Ent:"+entity.getUniqueIdentificator()+" Com:"
            +community.getName()+ " url:"+communityEntity.get(community).getUrl()
            +" met:"+sourceMetric.getIdentifier()+" rep:"+reputationMap.get(metric));           
          }             
View Full Code Here

Examples of edu.stanford.nlp.sempre.Evaluation

  }

  private Evaluation processParsingExamples(int iter, String group,
      List<ParsingExample> parsingExamples, boolean updateWeights) {

    Evaluation totalEval = new Evaluation();

    if (parsingExamples.size() == 0)
      return totalEval;

    final String prefix = "parsing_iter=" + iter + "." + group;
View Full Code Here

Examples of net.sf.mp.demo.conference.domain.conference.Evaluation

      return referEvaluationUseCache (evaluation, false);
   }
         
   public Evaluation referEvaluationUseCache (Evaluation evaluation, boolean isAssign) {
    String key = getCacheKey(null, evaluation, null, "assignEvaluation");
      Evaluation evaluationCache = (Evaluation)simpleCache.get(key);
      if (evaluationCache==null) {
         evaluationCache = referEvaluation (evaluation, isAssign);
         if (key!=null)
           simpleCache.put(key, evaluationCache);
      }
View Full Code Here

Examples of ognl.Evaluation

      // values[i] = 2l in a List<Long>.
      // we all just looooove ognl.
      OgnlContext ctx = (OgnlContext) context;
      // if direct injecting, cannot find out what to do, use string
      if (ctx.getRoot() != target) {
        Evaluation eval = ctx.getCurrentEvaluation();
        Evaluation previous = eval.getPrevious();
        String fieldName = previous.getNode().toString();
        Object origin = previous.getSource();
        Method getter = ReflectionBasedNullHandler.findMethod(origin.getClass(), "get"
            + Info.capitalize(fieldName), origin.getClass(), null);
        Type genericType = getter.getGenericReturnType();
                Class type;
                if (genericType instanceof ParameterizedType) {
View Full Code Here

Examples of org.apache.commons.math3.fitting.leastsquares.LeastSquaresProblem.Evaluation


        // Evaluate the function at the starting point and calculate its norm.
        evaluationCounter.incrementCount();
        //value will be reassigned in the loop
        Evaluation current = problem.evaluate(problem.getStart());
        double[] currentResiduals = current.getResiduals().toArray();
        double currentCost = current.getCost();
        double[] currentPoint = current.getPoint().toArray();

        // Outer loop.
        boolean firstIteration = true;
        while (true) {
            iterationCounter.incrementCount();

            final Evaluation previous = current;

            // QR decomposition of the jacobian matrix
            final InternalData internalData
                    = qrDecomposition(current.getJacobian(), solvedCols);
            final double[][] weightedJacobian = internalData.weightedJacobian;
View Full Code Here

Examples of org.apache.commons.math3.fitting.leastsquares.LeastSquaresProblem.Evaluation

        }

        RealVector currentPoint = lsp.getStart();

        // iterate until convergence is reached
        Evaluation current = null;
        while (true) {
            iterationCounter.incrementCount();

            // evaluate the objective function and its jacobian
            Evaluation previous = current;
            // Value of the objective function at "currentPoint".
            evaluationCounter.incrementCount();
            current = lsp.evaluate(currentPoint);
            final RealVector currentResiduals = current.getResiduals();
            final RealMatrix weightedJacobian = current.getJacobian();
View Full Code Here

Examples of org.apache.commons.math3.fitting.leastsquares.LeastSquaresProblem.Evaluation

    /** check {@link ConvergenceChecker#converged(int, Object, Object)}. */
    @Test
    public void testConverged() {
        //setup
        ConvergenceChecker<Evaluation> checker = new EvaluationRmsChecker(0.1, 1);
        Evaluation e200 = mockEvaluation(200);
        Evaluation e1 = mockEvaluation(1);

        //action + verify
        //just matches rel tol
        Assert.assertEquals(true, checker.converged(0, e200, mockEvaluation(210)));
        //just matches abs tol
View Full Code Here

Examples of org.apache.commons.math3.fitting.leastsquares.LeastSquaresProblem.Evaluation

     *
     * @param rms the evaluation's rms.
     * @return a new mock evaluation.
     */
    private static Evaluation mockEvaluation(final double rms) {
        return new Evaluation() {
            public RealMatrix getCovariances(double threshold) {
                return null;
            }

            public RealVector getSigma(double covarianceSingularityThreshold) {
View Full Code Here
TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.