Package edu.umd.cloud9.util.map

Examples of edu.umd.cloud9.util.map.HMapIL$ValueIterator


    Configuration conf = IntegrationUtils.getBespinConfiguration();
    FileSystem fs = FileSystem.get(conf);

    SequenceFile.Reader reader;
    IntWritable key = new IntWritable();
    HMapSFW value = new HMapSFW();

    reader = new SequenceFile.Reader(fs.getConf(),
        SequenceFile.Reader.file(new Path(opennlpIndex + "/test_wt-term-doc-vectors/part-00000")));

    reader.next(key, value);
    System.out.println("*** top 10 terms ***");
    for (MapKF.Entry<String> entry : value.getEntriesSortedByValue(10)) {
      System.out.println(entry.getKey() + ": " + entry.getValue());
    }
    verifyTermDocVector(opennlpTermDocVector1, value);

    reader.next(key, value);
    System.out.println("*** top 10 terms ***");
    for (MapKF.Entry<String> entry : value.getEntriesSortedByValue(10)) {
      System.out.println(entry.getKey() + ": " + entry.getValue());
    }
    verifyTermDocVector(opennlpTermDocVector2, value);
    reader.close();
  }
View Full Code Here


      sLogger = logger;
    }

    //sLogger.setLevel(Level.DEBUG);

    HMapSFW v = new HMapSFW();
    float normalization=0;
    for(int e : tfTable.keySet()){
      // retrieve term string, tf and df
      String eTerm = eVocab.get(e);
      float tf = tfTable.get(e);
      float df = dfTable.get(e);

      // compute score via scoring model
      float score = ((Bm25) scoringModel).computeDocumentWeight(tf, df, docLen);

      sLogger.debug(eTerm+" "+tf+" "+df+" "+score);
      if(score>0){
        v.put(eTerm, score);
        if(isNormalize){
          normalization+=Math.pow(score, 2);
        }   
      }
    }

    // length-normalize doc vector
    if(isNormalize){
      normalization = (float) Math.sqrt(normalization);
      for(Entry<String> e : v.entrySet()){
        v.put(e.getKey(), e.getValue()/normalization);
      }
    }
    return v;
  }
View Full Code Here

      sLogger = logger;
    }

    //sLogger.setLevel(Level.DEBUG);

    HMapSFW v = new HMapSFW();
    float normalization=0;
    for(int e : tfTable.keySet()){
      // retrieve term string, tf and df
      String eTerm = eVocab.get(e);
      float tf = tfTable.get(e);
      float df = dfTable.get(eTerm);

      // compute score via scoring model
      float score = ((Bm25) scoringModel).computeDocumentWeight(tf, df, docLen);

      sLogger.debug(eTerm+" "+tf+" "+df+" "+score);
      if(score>0){
        v.put(eTerm, score);
        if(isNormalize){
          normalization+=Math.pow(score, 2);
        }  
      }
    }

    // length-normalize doc vector
    if(isNormalize){
      normalization = (float) Math.sqrt(normalization);
      for(Entry<String> e : v.entrySet()){
        v.put(e.getKey(), e.getValue()/normalization);
      }
    }
    return v;
  }
View Full Code Here

      sLogger = logger;
    }

    //    sLogger.setLevel(Level.DEBUG);

    HMapSFW v = new HMapSFW();
    float normalization=0;
    for(edu.umd.cloud9.util.map.MapIF.Entry entry : tfTable.entrySet()){
      // retrieve term string, tf and df
      String eTerm = eVocab.get(entry.getKey());
      float tf = entry.getValue();
      int eId = dict.getId(eTerm);
      if(eId < 1){    //OOV
        continue;
      }
      int df = dfTable.getDf(eId);
      // compute score via scoring model
      float score = ((Bm25) scoringModel).computeDocumentWeight(tf, df, docLen);
      if(df<1){
        sLogger.warn("Suspicious DF WARNING = "+eTerm+" "+tf+" "+df+" "+score);
      }

      sLogger.debug(eTerm+" "+tf+" "+df+" "+score);

      if(score>0){
        v.put(eTerm, score);
        if(isNormalize){
          normalization+=Math.pow(score, 2);
        }   
      }
    }

    // length-normalize doc vector
    if(isNormalize){
      normalization = (float) Math.sqrt(normalization);
      for(Entry<String> e : v.entrySet()){
        v.put(e.getKey(), e.getValue()/normalization);
      }
    }
    return v;
  }
View Full Code Here

      sLogger = logger;
    }

    //    sLogger.setLevel(Level.DEBUG);

    HMapSFW v = new HMapSFW();
    float normalization=0;
    for(edu.umd.cloud9.util.map.MapKI.Entry<String> entry : tfTable.entrySet()){
      // retrieve term string, tf and df
      String eTerm = entry.getKey();
      float tf = entry.getValue();
      int eId = dict.getId(eTerm);
      if(eId < 1){    //OOV
        continue;
      }
      int df = dfTable.getDf(eId);
      // compute score via scoring model
      float score = ((Bm25) scoringModel).computeDocumentWeight(tf, df, docLen);
      if(df<1){
        sLogger.warn("Suspicious DF WARNING = "+eTerm+" "+tf+" "+df+" "+score);
      }

      sLogger.debug(eTerm+" "+tf+" "+df+" "+score);

      if(score>0){
        v.put(eTerm, score);
        if(isNormalize){
          normalization+=Math.pow(score, 2);
        }  
      }
    }

    // length-normalize doc vector
    if(isNormalize){
      normalization = (float) Math.sqrt(normalization);
      for(Entry<String> e : v.entrySet()){
        v.put(e.getKey(), e.getValue()/normalization);
      }
    }
    return v;
  }
View Full Code Here

  public static HMapSFW createTermDocVector(int docLen, HMapSIW tfTable, Vocab eVocabSrc, ScoringModel scoringModel, PrefixEncodedGlobalStats globalStats, boolean isNormalize, Logger sLogger) {
    if(sLogger == null){
      sLogger = logger;
    }

    HMapSFW v = new HMapSFW();
    float normalization=0;
    for(edu.umd.cloud9.util.map.MapKI.Entry<String> entry : tfTable.entrySet()){
      // retrieve term string, tf and df
      String eTerm = entry.getKey();
      int tf = entry.getValue();

      int df = globalStats.getDF(eTerm);
      if(df<1){    //OOV
        continue;
      }

      // compute score via scoring model
      float score = ((Bm25) scoringModel).computeDocumentWeight(tf, df, docLen);

      if(score>0){
        v.put(eTerm, score);
        if(isNormalize){
          normalization+=Math.pow(score, 2);
        }   
      }
    }

    // length-normalize doc vector
    if(isNormalize){
      normalization = (float) Math.sqrt(normalization);
      for(Entry<String> e : v.entrySet()){
        v.put(e.getKey(), e.getValue()/normalization);
      }
    }
    return v;
  }
View Full Code Here

    Map<String,HMapSFW> scfgDist = new HashMap<String,HMapSFW>();

    // phrase2count table is a set of (source_phrase --> X) maps, where X is a set of (phrase_trans --> count) maps
    HMapSFW phraseDist = new HMapSFW();

    HMapSIW srcTokenCnt = new HMapSIW();

    Set<String> bagOfTargetTokens = new HashSet<String>();

    try {
      FSDataInputStream fis = fs.open(new Path(grammarFile));
View Full Code Here

      return null;
    }
    PriorityQueue<PairOfFloatInt> eS = f2eProbs.get(f).getTranslationsWithProbs(lexProbThreshold);

    if (!eS.isEmpty()) {
      PairOfFloatInt entry = eS.poll();
      int e = entry.getRightElement();
      String eTerm = eVocab_f2e.get(e);
      return eTerm;
    }
    return token;
  }
View Full Code Here

    float sumProbEF = 0;
    int numTrans = 0;
    //tf(e) = sum_f{tf(f)*prob(e|f)}
    while (numTrans < numTransPerToken && !eS.isEmpty()) {
      PairOfFloatInt entry = eS.poll();
      float probEF = entry.getLeftElement();
      int e = entry.getRightElement();
      String eTerm = eVocab_f2e.get(e);

      //      LOG.info("Pr("+eTerm+"|"+token+")="+probEF);

      if (probEF > 0 && e > 0 && !docLangTokenizer.isStopWord(eTerm) && (translateOnly == null || !translateOnly.equals("indri") || indriPuncPattern.matcher(eTerm).matches()) && (pairsInSCFG == null || pairsInSCFG.contains(new PairOfStrings(token,eTerm)))) {     
View Full Code Here

            curIndex = prevIndex;    // revert curIndex value since we're skipping this one
            skipTerm = true;
            continue;
          }
          logger.debug("Processing: "+srcTerm+" with index: "+curIndex);     
          topTrans.add(new PairOfFloatString(prob, trgTerm));
          sumOfProbs += prob;
          logger.debug("Added to queue: "+trgTerm+" with prob: "+prob+" (sum: "+sumOfProbs+")");     
        }else if(!earlyTerminate && !skipTerm && !delims.contains(srcTerm)){  //continue adding translation term,prob pairs (except if early termination is ON)
          topTrans.add(new PairOfFloatString(prob, trgTerm));
          sumOfProbs += prob;
          logger.debug("Added to queue: "+trgTerm+" with prob: "+prob+" (sum: "+sumOfProbs+")");     

          // keep top numTrans translations
          if(topTrans.size() > numTrans){
            PairOfFloatString pair = topTrans.pollFirst();
            float removedProb = pair.getLeftElement();
            sumOfProbs -= removedProb;
            logger.debug("Removed from queue: "+pair.getRightElement()+" (sum: "+sumOfProbs+")");     
          }
        }else{
          logger.debug("Skipped line: "+line);
        }
      }
View Full Code Here

TOP

Related Classes of edu.umd.cloud9.util.map.HMapIL$ValueIterator

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.