Package edu.umd.cloud9.io

Examples of edu.umd.cloud9.io.FSLineReader


          continue;     
        }
        bagOfTargetTokens.add(eTerm);
        if (isOne2Many <= 1) {
          if (probDist.containsKey(fTerm)) {
            HMapSFW eToken2Prob = probDist.get(fTerm);
            eToken2Prob.increment(eTerm, weight);
          }else {
            HMapSFW eToken2Prob = new HMapSFW();
            eToken2Prob.put(eTerm, weight);
            probDist.put(fTerm, eToken2Prob);
          }
        }
      }

      if (isOne2Many == 2) {
        // if ids.size() > 1 eTerm is a multi-token expression
        // even if eTerm is overwritten here, we need to do above loop to update bagOfTargetTokens
        if (ids.size() > 1) {
          eTerm = isConsecutiveWithStopwords(ids, rhs, docLangTokenizer);     // <---- heuristic
        }

        // no proper translation on target-side (e.g., stopword OR non-consecutive multi-word translation), let's skip
        if (eTerm == null) {
          continue;
        }

        eTerm = Utils.removeBorderStopWords(docLangTokenizer, eTerm);
       
        // this is difference between one-to-many and one-to-one heuristics for 1-best MT case
        // we add multi-token expressions in addition to single target tokens,
        bagOfTargetTokens.add(eTerm);

        // update prob. distr.
        if (probDist.containsKey(fTerm)) {
          HMapSFW eToken2Prob = probDist.get(fTerm);
          eToken2Prob.increment(eTerm, weight);
        }else {
          HMapSFW eToken2Prob = new HMapSFW();
          eToken2Prob.put(eTerm, weight);
          probDist.put(fTerm, eToken2Prob);
        }
      }
    }
View Full Code Here


   * @param threshold
   * @param scale
   * @param probMap
   */
  public static HMapSFW scaleProbMap(float threshold, float scale, HMapSFW probMap) {
    HMapSFW scaledProbMap = new HMapSFW();

    for (Entry<String> entry : probMap.entrySet()) {
      float pr = entry.getValue() * scale;
      if (pr > threshold) {
        scaledProbMap.put(entry.getKey(), pr);
      }
    }

    return scaledProbMap;
  }
View Full Code Here

   *    value between 0 and 1 that determines total probability in final distribution (e.g., 0.2 scale will scale [0.8 0.1 0.1] into [0.16 0.02 0.02])
   * @param probMaps
   *    list of probability distributions
   */
  public static HMapSFW combineProbMaps(float threshold, float scale, List<PairOfFloatMap> probMaps) {
    HMapSFW combinedProbMap = new HMapSFW();

    int numDistributions = probMaps.size();

    // get a combined set of all translation alternatives
    // compute normalization factor when sum of weights is not 1.0
    Set<String> translationAlternatives = new HashSet<String>();
    float sumWeights = 0;
    for (int i=0; i < numDistributions; i++) {
      HMapSFW dist = probMaps.get(i).getMap();
      float weight = probMaps.get(i).getWeight();

      // don't add vocabulary from a distribution that has 0 weight
      if (weight > 0) {
        translationAlternatives.addAll(dist.keySet());
        sumWeights += weight;
      }
    }

    // normalize by sumWeights
    for (String e : translationAlternatives) {
      float combinedProb = 0f;
      for (int i=0; i < numDistributions; i++) {
        HMapSFW dist = probMaps.get(i).getMap();
        float weight = probMaps.get(i).getWeight();
        combinedProb += (weight/sumWeights) * dist.get(e);    // Prob(e|f) = weighted average of all distributions
      }
      combinedProb *= scale;
      if (combinedProb > threshold) {
        combinedProbMap.put(e, combinedProb);
      }
View Full Code Here

   * @param cumProbThreshold
   * @param maxNumTrans
   */
  public static void normalize(Map<String, HMapSFW> probMap, float lexProbThreshold, float cumProbThreshold, int maxNumTrans) {
    for (String sourceTerm : probMap.keySet()) {
      HMapSFW probDist = probMap.get(sourceTerm);
      TreeSet<PairOfStringFloat> sortedFilteredProbDist = new TreeSet<PairOfStringFloat>();
      HMapSFW normProbDist = new HMapSFW();

      // compute normalization factor
      float sumProb = 0;
      for (Entry<String> entry : probDist.entrySet()) {
        sumProb += entry.getValue();
      }

      // normalize values and remove low-prob entries based on normalized values
      float sumProb2 = 0;
      for (Entry<String> entry : probDist.entrySet()) {
        float pr = entry.getValue() / sumProb;
        if (pr > lexProbThreshold) {
          sumProb2 += pr;
          sortedFilteredProbDist.add(new PairOfStringFloat(entry.getKey(), pr));
        }
      }

      // re-normalize values after removal of low-prob entries
      float cumProb = 0;
      int cnt = 0;
      while (cnt < maxNumTrans && cumProb < cumProbThreshold && !sortedFilteredProbDist.isEmpty()) {
        PairOfStringFloat entry = sortedFilteredProbDist.pollLast();
        float pr = entry.getValue() / sumProb2;
        cumProb += pr;
        normProbDist.put(entry.getKey(), pr);
        cnt++;
      }

      probMap.put(sourceTerm, normProbDist);
    }
View Full Code Here

    return new JUnit4TestAdapter(EnAr_TREC02.class);
  }

  public static void main(String[] args) {
    //    HMapSFW gridAPMap = array2Map(Interp_AP);
    HMapSFW tenbestAPMap = array2Map(Nbest_AP.get(2));
    HMapSFW onebestAPMap = array2Map(Onebest_AP.get(1));
    HMapSFW grammarAPMap = array2Map(grammar_AP.get(0));
    HMapSFW tokenAPMap = array2Map(baseline_token_AP);
    //    System.out.println(countNumberOfImprovedTopics(tokenAPMap, gridAPMap));
    System.out.println(countNumberOfImprovedTopics(tokenAPMap, tenbestAPMap));
    System.out.println(countNumberOfImprovedTopics(tokenAPMap, onebestAPMap));
    System.out.println(countNumberOfImprovedTopics(tokenAPMap, grammarAPMap));
    System.out.println(countNumberOfImprovedTopics(tokenAPMap, tokenAPMap));
View Full Code Here

    }
    return cnt;
  }

  private static HMapSFW array2Map(String[] array) {
    HMapSFW map = new HMapSFW();
    for ( int i = 0; i < array.length; i += 2 ) {
      map.put(array[i], Float.parseFloat(array[i+1]));
    }
    return map;
  }
View Full Code Here

        if (trans != null) {
          tokenTranslations.add(new JsonPrimitive(trans));
        }
      } else {
        JsonObject tokenTrans = new JsonObject();
        HMapSFW distr = getTranslations(origQuery, token, phrasePairs, stemmed2Stemmed);
  JsonArray weights = Utils.createJsonArrayFromProbabilities(distr);
        if (weights != null) {
          tokenTrans.add("#weight", weights);
          tokenTranslations.add(tokenTrans);
        }
View Full Code Here

    return new JUnit4TestAdapter(EnFr_CLEF06.class);
  }

  public static void main(String[] args) {
    //    HMapSFW gridAPMap = array2Map(Gridbest_AP);
    HMapSFW tenbestAPMap = array2Map(Nbest_AP.get(2));
    HMapSFW onebestAPMap = array2Map(Onebest_AP.get(1));
    HMapSFW grammarAPMap = array2Map(grammar_AP.get(0));
    HMapSFW tokenAPMap = array2Map(baseline_token_AP);
    //    System.out.println(countNumberOfImprovedTopics(tokenAPMap, gridAPMap));
    System.out.println(countNumberOfImprovedTopics(tokenAPMap, tenbestAPMap));
    System.out.println(countNumberOfImprovedTopics(tokenAPMap, onebestAPMap));
    System.out.println(countNumberOfImprovedTopics(tokenAPMap, grammarAPMap));
    System.out.println(countNumberOfImprovedTopics(tokenAPMap, tokenAPMap));
View Full Code Here

    }
    return token;
  }

  protected HMapSFW getTranslations(String query, String token, Set<PairOfStrings> pairsInSCFG, Map<String, String> stemmed2Stemmed) {
    HMapSFW probDist = new HMapSFW();
    int f = fVocab_f2e.get(token);
    if (f <= 0) {

      // heuristic: if no translation found, include itself as only translation
      String target = (stemmed2Stemmed == null) ? token : stemmed2Stemmed.get(token);
      probDist.put(target, 1);     
      return probDist;
    }
    PriorityQueue<PairOfFloatInt> eS = f2eProbs.get(f).getTranslationsWithProbs(lexProbThreshold);
    //    LOG.info("Adding "+ eS.size() +" translations for "+token+","+f);

    float sumProbEF = 0;
    int numTrans = 0;
    //tf(e) = sum_f{tf(f)*prob(e|f)}
    while (numTrans < numTransPerToken && !eS.isEmpty()) {
      PairOfFloatInt entry = eS.poll();
      float probEF = entry.getLeftElement();
      int e = entry.getRightElement();
      String eTerm = eVocab_f2e.get(e);

      //      LOG.info("Pr("+eTerm+"|"+token+")="+probEF);

      if (probEF > 0 && e > 0 && !docLangTokenizer.isStopWord(eTerm) && (translateOnly == null || !translateOnly.equals("indri") || indriPuncPattern.matcher(eTerm).matches()) && (pairsInSCFG == null || pairsInSCFG.contains(new PairOfStrings(token,eTerm)))) {     
        // assuming our bilingual dictionary is learned from normally segmented text, but we want to use bigram tokenizer for CLIR purposes
        // then we need to convert the translations of each source token into a sequence of bigrams
        // we can distribute the translation probability equally to the each bigram
        if (bigramSegment) {
          String[] eTokens = docLangTokenizer.processContent(eTerm);
          float splitProb = probEF / eTokens.length;
          for (String eToken : eTokens) {
            // heuristic: only keep translations that are in our collection
            // exception: index might not be specified if running in --translate_only mode (in that case, we cannot run this heuristic)
            if (env == null || env.getPostingsList(eToken) != null) {
              probDist.put(eToken, splitProb);
            }
          }
          // here we add probability for tokens that we ignored in above condition,
          // but it works better (empirically) this way
          // AND it is consistent with what we would get if we did not do the index-filtering above
          // only faster
          sumProbEF += probEF;     
        }else {
    // heuristic: only keep translations that are in our collection
    // exception: index might not be specified if running in --translate_only mode (in that case, we cannot run this heuristic)
          if (env == null || env.getPostingsList(eTerm) != null) {
            probDist.increment(eTerm, probEF);
            sumProbEF += probEF;
          }
        }
        numTrans++;
      }else{
        LOG.info("Skipped target stopword/OOV " + eTerm);
      }

      // early terminate if cumulative prob. has reached specified threshold
      if (sumProbEF > cumProbThreshold || numTrans >= numTransPerToken) {
        break;
      }
    }

    // normalize weights
    for(String e : probDist.keySet()){
      probDist.put(e, probDist.get(e) / sumProbEF);
    }

    //    LOG.info("Translations of "+token+"="+probDist);

    return probDist;
View Full Code Here

    }
    return cnt;
  }

  private static HMapSFW array2Map(String[] array) {
    HMapSFW map = new HMapSFW();
    for ( int i = 0; i < array.length; i += 2 ) {
      map.put(array[i], Float.parseFloat(array[i+1]));
    }
    return map;
  }
View Full Code Here

TOP

Related Classes of edu.umd.cloud9.io.FSLineReader

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.