Package edu.ucla.sspace.clustering

Examples of edu.ucla.sspace.clustering.BaseSpectralCut$Index


    return String.valueOf(characters, index++, len);
  }

  @Override
  public Index getIndex(int bookmark) {
    return new Index(bookmark, index);
  }
View Full Code Here


    int ni = shape[0];
    int nj = shape[1];
    int nk = shape[2];

    array = new ArrayDouble.D3(ni, nj, nk);
    Index index = array.getIndex();

    for (int i = 0; i < ni; i++) {
      for (int j = 0; j < nj; j++) {
        for (int k = 0; k < nk; k++) {
          index.set(i, j, k);
          double d = pertArray.getDouble(index)
              + baseArray.getDouble(index);
          if (isZStag) {
            d = d / 9.81//convert geopotential to height
          }
View Full Code Here

      IndexChunker.printl(" dataStrides=", dataStrides);
      IndexChunker.printa(" wantStride=", resultStrides);
      System.out.println(" indexChunks=" + Index.computeSize(shape));
    }
    dataIndex = new IndexLong(shape, dataStrides);
    resultIndex = new Index(shape, resultStrides);

    if (debugDetail) {
      System.out.println(" dataIndex="+ dataIndex.toString());
      System.out.println(" resultIndex="+ resultIndex.toStringDebug());
    }
View Full Code Here

    Array data = v.read();
    int[] shape = data.getShape();
    assert shape[0] == 1000;
    assert shape[1] == 20;

    Index ima = data.getIndex();
    for (int i = 0; i < 1000; i++)
      for (int j = 0; j < 20; j++) {
        int val = data.getInt(ima.set(i, j));
        assert val == i + j : val + " != " + (i + j);
      }

  }
View Full Code Here

        Array dataArray =
            Array.factory(v2.getDataType().getPrimitiveClassType(),
                          section.getShape());

        Index dataIndex = dataArray.getIndex();

        if (varname.equals("latitude") || varname.equals("longitude")) {
            double[][] pixel = new double[2][1];
            double[][] latLon;
            double[][][] latLonValues =
                new double[geoXRange.length()][geoYRange.length()][2];

            // Use Range object, which calculates requested i, j
            // values and incorporates stride
            for (int i = 0; i < geoXRange.length(); i++) {
                for (int j = 0; j < geoYRange.length(); j++) {
                    pixel[0][0] = (double) geoXRange.element(i);
                    pixel[1][0] = (double) geoYRange.element(j);
                    latLon      = nav.toLatLon(pixel);

                    if (varname.equals("lat")) {
                        dataArray.setFloat(dataIndex.set(j, i),
                                           (float) (latLon[0][0]));
                    } else {
                        dataArray.setFloat(dataIndex.set(j, i),
                                           (float) (latLon[1][0]));
                    }
                }
            }
        }

        if (varname.equals("image")) {
            try {
                int[][] pixelData = new int[1][1];
                if (bandRange != null) {
                    for (int k = 0; k < bandRange.length(); k++) {
                        int bandIndex = bandRange.element(k) + 1// band numbers in McIDAS are 1 based
                        for (int j = 0; j < geoYRange.length(); j++) {
                            for (int i = 0; i < geoXRange.length(); i++) {
                                pixelData = af.getData(geoYRange.element(j),
                                        geoXRange.element(i), 1, 1,
                                        bandIndex);
                                dataArray.setInt(dataIndex.set(0, k, j, i),
                                        (pixelData[0][0]));
                            }
                        }
                    }

                } else {
                    for (int j = 0; j < geoYRange.length(); j++) {
                        for (int i = 0; i < geoXRange.length(); i++) {
                            pixelData = af.getData(geoYRange.element(j),
                                    geoXRange.element(i), 1, 1);
                            dataArray.setInt(dataIndex.set(0, j, i),
                                             (pixelData[0][0]));
                        }
                    }

                }
View Full Code Here

                    var=varList.get(ix);
                    if ((var.getShortName()).equals("numGates")) { numGates=var; break}
                }
            }
            ArrayInt.D1 gatesArr=(ArrayInt.D1) Array.factory(DataType.INT, numGates.getShape());
            Index gatesIndex=gatesArr.getIndex();
           
            for (int i=0; i<number_sweeps; i++) {
                List rlist = sgp[i];
                for (int jj=0; jj<num_rays; jj++) { rtemp[jj]=(Ray)rlist.get(jj); } //ray[i][jj]; }
                ngates=rtemp[0].getBins();
                gatesArr.setInt(gatesIndex.set(i), ngates);
            }

            for (int i=0; i<number_sweeps; i++) {
                distanceR[i].setCachedData(distArr[i], false);
                time[i].setCachedData(timeArr[i], false);
View Full Code Here

              cmap.length, cmap, 0, true, Transparency.OPAQUE, DataBuffer.TYPE_BYTE);

      int[] shape = array.getShape();
      BufferedImage bi = new BufferedImage(shape[1], shape[0],BufferedImage.TYPE_BYTE_INDEXED, colorModel);

      Index index = array.getIndex();
      for (int y = 0; y < shape[0]; y++) {
        for (int x = 0; x < shape[1]; x++) {
          index.set(y, x);

          byte bval = array.getByte(index);
          double dval = v.isUnsigned() ? (double) DataType.unsignedByteToShort(bval) : (double) bval;

          //double dval = array.getDouble(index);
View Full Code Here

      return;
    }
    assert (A.getRank() == 2);

    int i,j;
    Index ima = A.getIndex();
    int[] shape = A.getShape();
    assert shape[0] == 64;
    assert shape[1] == 128;

    for (i=0; i<shape[0]; i++) {
      for (j=0; j<shape[1]; j++) {
        double dval = A.getDouble(ima.set(i,j));
        assertdval == (double) (i*1000000+j*1000)) : dval;
      }
    }

    // read part of array
    int[] origin2 = new int[2];
    int[] shape2 = new int[2];
    shape2[0] = 1;
    shape2[1] = temp.getShape()[1];
    try {
      A = temp.read(origin2, shape2);
    } catch (InvalidRangeException e) {
      System.err.println("ERROR reading file " +e);
      assert(false);
      return;
    } catch (IOException e) {
      System.err.println("ERROR reading file");
      assert(false);
      return;
    }
    assert (A.getRank() == 2);

    for (j=0; j<shape2[1]; j++) {
      assert( A.getDouble(ima.set(0,j)) == (double) (j*1000));
    }

    // rank reduction
    Array Areduce = A.reduce();
    Index ima2 = Areduce.getIndex();
    assert (Areduce.getRank() == 1);

    for (j=0; j<shape2[1]; j++) {
      assert( Areduce.getDouble(ima2.set(j)) == (double) (j*1000));
    }

    // read char variable
    Variable c = null;
    assert(null != (c = ncfile.findVariable("svar")));
View Full Code Here

          e);
      throw (new IOException(
          "Could not read from variables mass_values and/or intensity_values."));
    }

    Index massValuesIndex = massValueArray.getIndex();
    Index intensityValuesIndex = intensityValueArray.getIndex();

    int arrayLength = massValueArray.getShape()[0];

    DataPoint completeDataPoints[] = new DataPoint[arrayLength];

    for (int j = 0; j < arrayLength; j++) {
      Index massIndex0 = massValuesIndex.set0(j);
      Index intensityIndex0 = intensityValuesIndex.set0(j);

      double mz = massValueArray.getDouble(massIndex0)
          * massValueScaleFactor;
      double intensity = intensityValueArray.getDouble(intensityIndex0)
          * intensityValueScaleFactor;
 
View Full Code Here

            int minTileX = minX / tileWidth - (minX < 0 ? (-minX % tileWidth > 0 ? 1 : 0): 0);
            int minTileY = minY / tileHeight - (minY < 0 ? (-minY % tileHeight > 0 ? 1 : 0): 0);
            int maxTileX = maxX / tileWidth - (maxX < 0 ? (-maxX % tileWidth > 0 ? 1 : 0): 0);
            int maxTileY = maxY / tileHeight - (maxY < 0 ? (-maxY % tileHeight > 0 ? 1 : 0): 0);

            final Index matrixIndex = matrix.getIndex();
            final int indexing[] = new int[numDimensions];

            // Update the NetCDF array indexing to set values for a specific 2D slice
            updateIndexing(indexing, gridCoverage);

            // ----------------
            // Fill data matrix
            // ----------------

            // Loop over bands using a RandomIter
            final RandomIter data = RandomIterFactory.create(ri, null);
            for (int tileY = minTileY; tileY <= maxTileY; tileY++) {
                for (int tileX = minTileX; tileX <= maxTileX; tileX++) {
                    for (int trow = 0; trow < tileHeight; trow++) {
                        int j = (tileY * tileHeight) + trow;
                        if ((j >= minY) && (j <= maxY)) {
                            for (int tcol = 0; tcol < tileWidth; tcol++) {
                                int col = (tileX * tileWidth) + tcol;
                                if ((col >= minX) && (col <= maxX)) {
                                    int k = col;
                                    final int yPos = height - j + minY - 1;

                                    // Simply setting lat and lon
                                    indexing[numDimensions - 1] = k - minX;
                                    indexing[numDimensions - 2] = yPos;
                                    matrixIndex.set(indexing);

                                    // Write data
                                    switch (netCDFDataType) {
                                    case BYTE:
                                        byte sampleByte = (byte) data.getSampleFloat(k, j, 0);
View Full Code Here

TOP

Related Classes of edu.ucla.sspace.clustering.BaseSpectralCut$Index

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.