Package edu.emory.mathcs.csparsej.tfloat.Scs_common

Examples of edu.emory.mathcs.csparsej.tfloat.Scs_common.Scss


    public static boolean demo3(Sproblem Prob) {
        Scs A, C, W = null, WW, WT, E = null, W2;
        int n, k, Li[], Lp[], Wi[], Wp[], p1, p2, p[] = null;
        boolean ok;
        float b[], x[], resid[], y[] = null, Lx[], Wx[], s, t, t1;
        Scss S = null;
        Scsn N = null;
        if (Prob == null || Prob.sym == 0 || Prob.A.n == 0)
            return (false);
        A = Prob.A;
        C = Prob.C;
View Full Code Here


     *            size max(m,n), b (size m) on input, x(size n) on output
     * @return true if successful, false on error
     */
    public static boolean cs_qrsol(int order, Scs A, float[] b) {
        float x[];
        Scss S;
        Scsn N;
        Scs AT = null;
        int k, m, n;
        boolean ok;
        if (!Scs_util.CS_CSC(A) || b == null)
View Full Code Here

     *            right hand side, b is overwritten with solution
     * @return true if successful, false on error
     */
    public static boolean cs_cholsol(int order, Scs A, float[] b) {
        float x[];
        Scss S;
        Scsn N;
        int n;
        boolean ok;
        if (!Scs_util.CS_CSC(A) || b == null)
            return (false); /* check inputs */
 
View Full Code Here

     * @return symbolic analysis for Cholesky, null on error
     */
    public static Scss cs_schol(int order, Scs A) {
        int n, c[], post[], P[];
        Scs C;
        Scss S;
        if (!Scs_util.CS_CSC(A))
            return (null); /* check inputs */
        n = A.n;
        S = new Scss(); /* allocate result S */
        P = Scs_amd.cs_amd(order, A); /* P = amd(A+A'), or natural */
        S.pinv = Scs_pinv.cs_pinv(P, n); /* find inverse permutation */
        if (order != 0 && S.pinv == null)
            return null;
        C = Scs_symperm.cs_symperm(A, S.pinv, false); /* C = spones(triu(A(P,P))) */
 
View Full Code Here

     *            analyze for QR if true or LU if false
     * @return symbolic analysis for QR or LU, null on error
     */
    public static Scss cs_sqr(int order, Scs A, boolean qr) {
        int n, k, post[];
        Scss S;
        boolean ok = true;
        if (!Scs_util.CS_CSC(A))
            return (null); /* check inputs */
        n = A.n;
        S = new Scss(); /* allocate result S */
        S.q = Scs_amd.cs_amd(order, A); /* fill-reducing ordering */
        if (order > 0 && S.q == null)
            return (null);
        if (qr) /* QR symbolic analysis */
        {
View Full Code Here

     *            partial pivoting tolerance
     * @return true if successful, false on error
     */
    public static boolean cs_lusol(int order, Scs A, float[] b, float tol) {
        float[] x;
        Scss S;
        Scsn N;
        int n;
        boolean ok;
        if (!Scs_util.CS_CSC(A) || b == null)
            return (false); /* check inputs */
 
View Full Code Here

TOP

Related Classes of edu.emory.mathcs.csparsej.tfloat.Scs_common.Scss

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.