Package de.lmu.ifi.dbs.elki.utilities.optionhandling.parameterization

Examples of de.lmu.ifi.dbs.elki.utilities.optionhandling.parameterization.ListParameterization


   *
   * @throws ParameterException on errors.
   */
  @Test
  public void testCASHResults() {
    ListParameterization inp = new ListParameterization();
    // CASH input
    inp.addParameter(FileBasedDatabaseConnection.PARSER_ID, ParameterizationFunctionLabelParser.class);
    // Input
    Database db = makeSimpleDatabase(UNITTEST + "hierarchical-3d2d1d.csv", 600, inp, null);

    // CASH parameters
    ListParameterization params = new ListParameterization();
    params.addParameter(CASH.JITTER_ID, 0.7);
    params.addParameter(CASH.MINPTS_ID, 50);
    params.addParameter(CASH.MAXLEVEL_ID, 25);
    params.addFlag(CASH.ADJUST_ID);

    // setup algorithm
    CASH cash = ClassGenericsUtil.parameterizeOrAbort(CASH.class, params);
    testParameterizationOk(params);

View Full Code Here


  @Test
  public void testCOPACOverlap() {
    Database db = makeSimpleDatabase(UNITTEST + "correlation-overlap-3-5d.ascii", 650);

    // Setup algorithm
    ListParameterization params = new ListParameterization();
    params.addParameter(COPAC.PARTITION_ALGORITHM_ID, DBSCAN.class);
    params.addParameter(DBSCAN.EPSILON_ID, 0.5);
    params.addParameter(DBSCAN.MINPTS_ID, 20);
    params.addParameter(COPAC.PREPROCESSOR_ID, KNNQueryFilteredPCAIndex.Factory.class);
    params.addParameter(KNNQueryFilteredPCAIndex.Factory.K_ID, 45);
    // PCA
    params.addParameter(PCARunner.PCA_COVARIANCE_MATRIX, WeightedCovarianceMatrixBuilder.class);
    params.addParameter(WeightedCovarianceMatrixBuilder.WEIGHT_ID, ErfcWeight.class);
    params.addParameter(PCAFilteredRunner.PCA_EIGENPAIR_FILTER, PercentageEigenPairFilter.class);
    params.addParameter(PercentageEigenPairFilter.ALPHA_ID, 0.8);

    COPAC<DoubleVector, DoubleDistance> copac = ClassGenericsUtil.parameterizeOrAbort(COPAC.class, params);
    testParameterizationOk(params);

    Clustering<Model> result = copac.run(db);
View Full Code Here

   */
  @Test
  public void testSUBCLUResults() {
    Database db = makeSimpleDatabase(UNITTEST + "subspace-simple.csv", 600);

    ListParameterization params = new ListParameterization();
    params.addParameter(SUBCLU.EPSILON_ID, 0.001);
    params.addParameter(SUBCLU.MINPTS_ID, 100);

    // setup algorithm
    SUBCLU<DoubleVector> subclu = ClassGenericsUtil.parameterizeOrAbort(SUBCLU.class, params);
    testParameterizationOk(params);

View Full Code Here

   * @throws ParameterException on errors.
   */
  @Test
  public void testCASHEmbedded() {
    // CASH input
    ListParameterization inp = new ListParameterization();
    inp.addParameter(FileBasedDatabaseConnection.PARSER_ID, ParameterizationFunctionLabelParser.class);
    Database db = makeSimpleDatabase(UNITTEST + "correlation-embedded-2-4d.ascii", 600, inp, null);

    // CASH parameters
    ListParameterization params = new ListParameterization();
    params.addParameter(CASH.JITTER_ID, 0.7);
    params.addParameter(CASH.MINPTS_ID, 160);
    params.addParameter(CASH.MAXLEVEL_ID, 40);

    // setup algorithm
    CASH cash = ClassGenericsUtil.parameterizeOrAbort(CASH.class, params);
    testParameterizationOk(params);

View Full Code Here

  @Test
  public void testSUBCLUSubspaceOverlapping() {
    Database db = makeSimpleDatabase(UNITTEST + "subspace-overlapping-3-4d.ascii", 850);

    // Setup algorithm
    ListParameterization params = new ListParameterization();
    params.addParameter(SUBCLU.EPSILON_ID, 0.04);
    params.addParameter(SUBCLU.MINPTS_ID, 70);
    SUBCLU<DoubleVector> subclu = ClassGenericsUtil.parameterizeOrAbort(SUBCLU.class, params);
    testParameterizationOk(params);

    // run SUBCLU on database
    Clustering<SubspaceModel<DoubleVector>> result = subclu.run(db);
View Full Code Here

  @Test
  public void testERiCResults() {
    Database db = makeSimpleDatabase(UNITTEST + "hierarchical-3d2d1d.csv", 600);

    // ERiC
    ListParameterization params = new ListParameterization();
    params.addParameter(COPAC.PARTITION_ALGORITHM_ID, DBSCAN.class);
    params.addParameter(DBSCAN.MINPTS_ID, 30);
    params.addParameter(DBSCAN.EPSILON_ID, 0);
    // ERiC Distance function in DBSCAN:
    params.addParameter(COPAC.PARTITION_DISTANCE_ID, ERiCDistanceFunction.class);
    params.addParameter(ERiCDistanceFunction.DELTA_ID, 0.20);
    params.addParameter(ERiCDistanceFunction.TAU_ID, 0.04);
    // Preprocessing via Local PCA:
    params.addParameter(COPAC.PREPROCESSOR_ID, KNNQueryFilteredPCAIndex.Factory.class);
    params.addParameter(KNNQueryFilteredPCAIndex.Factory.K_ID, 50);
    // PCA
    params.addParameter(PCARunner.PCA_COVARIANCE_MATRIX, WeightedCovarianceMatrixBuilder.class);
    params.addParameter(WeightedCovarianceMatrixBuilder.WEIGHT_ID, ErfcWeight.class);
    params.addParameter(PCAFilteredRunner.PCA_EIGENPAIR_FILTER, RelativeEigenPairFilter.class);
    params.addParameter(RelativeEigenPairFilter.EIGENPAIR_FILTER_RALPHA, 1.60);

    ERiC<DoubleVector> eric = ClassGenericsUtil.parameterizeOrAbort(ERiC.class, params);
    testParameterizationOk(params);

    // run ERiC on database
View Full Code Here

  @Test
  public void testFourCResults() {
    Database db = makeSimpleDatabase(UNITTEST + "hierarchical-3d2d1d.csv", 600);

    // Setup 4C
    ListParameterization params = new ListParameterization();
    params.addParameter(AbstractProjectedDBSCAN.EPSILON_ID, 0.30);
    params.addParameter(AbstractProjectedDBSCAN.MINPTS_ID, 20);
    params.addParameter(AbstractProjectedDBSCAN.LAMBDA_ID, 5);

    FourC<DoubleVector> fourc = ClassGenericsUtil.parameterizeOrAbort(FourC.class, params);
    testParameterizationOk(params);

    // run 4C on database
View Full Code Here

  @Test
  public void testFourCOverlap() {
    Database db = makeSimpleDatabase(UNITTEST + "correlation-overlap-3-5d.ascii", 650);

    // Setup algorithm
    ListParameterization params = new ListParameterization();
    // 4C
    params.addParameter(AbstractProjectedDBSCAN.EPSILON_ID, 1.2);
    params.addParameter(AbstractProjectedDBSCAN.MINPTS_ID, 5);
    params.addParameter(AbstractProjectedDBSCAN.LAMBDA_ID, 3);

    FourC<DoubleVector> fourc = ClassGenericsUtil.parameterizeOrAbort(FourC.class, params);
    testParameterizationOk(params);

    // run 4C on database
View Full Code Here

  @Test
  public void testERiCOverlap() {
    Database db = makeSimpleDatabase(UNITTEST + "correlation-overlap-3-5d.ascii", 650);

    // Setup algorithm
    ListParameterization params = new ListParameterization();
    // ERiC
    params.addParameter(COPAC.PARTITION_ALGORITHM_ID, DBSCAN.class);
    params.addParameter(DBSCAN.MINPTS_ID, 15);
    params.addParameter(DBSCAN.EPSILON_ID, 0);
    // ERiC Distance function in DBSCAN:
    params.addParameter(COPAC.PARTITION_DISTANCE_ID, ERiCDistanceFunction.class);
    params.addParameter(ERiCDistanceFunction.DELTA_ID, 1.0);
    params.addParameter(ERiCDistanceFunction.TAU_ID, 1.0);
    // Preprocessing via Local PCA:
    params.addParameter(COPAC.PREPROCESSOR_ID, KNNQueryFilteredPCAIndex.Factory.class);
    params.addParameter(KNNQueryFilteredPCAIndex.Factory.K_ID, 45);
    // PCA
    params.addParameter(PCARunner.PCA_COVARIANCE_MATRIX, WeightedCovarianceMatrixBuilder.class);
    params.addParameter(WeightedCovarianceMatrixBuilder.WEIGHT_ID, ErfcWeight.class);
    params.addParameter(PCAFilteredRunner.PCA_EIGENPAIR_FILTER, PercentageEigenPairFilter.class);
    params.addParameter(PercentageEigenPairFilter.ALPHA_ID, 0.6);

    ERiC<DoubleVector> eric = ClassGenericsUtil.parameterizeOrAbort(ERiC.class, params);
    testParameterizationOk(params);

    // run ERiC on database
View Full Code Here

   */
  @Test
  public void testORCLUSResults() {
    Database db = makeSimpleDatabase(UNITTEST + "correlation-hierarchy.csv", 450);

    ListParameterization params = new ListParameterization();
    // these parameters are not picked too smartly - room for improvement.
    params.addParameter(ORCLUS.K_ID, 3);
    params.addParameter(ORCLUS.L_ID, 1);
    params.addParameter(ORCLUS.SEED_ID, 2);

    // setup algorithm
    ORCLUS<DoubleVector> orclus = ClassGenericsUtil.parameterizeOrAbort(ORCLUS.class, params);
    testParameterizationOk(params);

View Full Code Here

TOP

Related Classes of de.lmu.ifi.dbs.elki.utilities.optionhandling.parameterization.ListParameterization

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.