Package de.lmu.ifi.dbs.elki.database.ids

Examples of de.lmu.ifi.dbs.elki.database.ids.ArrayModifiableDBIDs


        adjustApproximatedKNNDistances(dirEntry, knnLists);
      }
    }

    // PolynomialApproximation approx1 = node.knnDistanceApproximation();
    ArrayModifiableDBIDs ids = DBIDUtil.newArray();
    leafEntryIDs(node, ids);
    PolynomialApproximation approx = approximateKnnDistances(getMeanKNNList(ids, knnLists));
    entry.setKnnDistanceApproximation(approx);
  }
View Full Code Here


     *
     * Implementation of the {@link OrderingResult} interface.
     */
    @Override
    public IterableIterator<DBID> iter(DBIDs ids) {
      ArrayModifiableDBIDs res = DBIDUtil.newArray(ids.size());
      for(ClusterOrderEntry<D> e : clusterOrder) {
        if(ids.contains(e.getID())) {
          res.add(e.getID());
        }
      }

      // TODO: elements in ids that are not in clusterOrder are lost!
      return new IterableIteratorAdapter<DBID>(res);
View Full Code Here

      fastrandomaccess = true;
    }
    if(samplesize <= setsize || !fastrandomaccess) {
      // use pool approach
      // if getIDs() is an array list, we don't need to copy it again.
      ArrayModifiableDBIDs pool = ((ArrayModifiableDBIDs.class.isAssignableFrom(ids.getClass())) ? (ArrayModifiableDBIDs) ids : DBIDUtil.newArray(ids));
      for(int i = 0; i < samplesize; i++) {
        int j = (int) Math.floor(Math.random() * (dbsize - i));
        result.add(db.get(pool.get(j)));
        pool.set(j, pool.get(dbsize - i - 1));
      }
      ids = null; // dirty!
    }
    else {
      HashSet<Integer> selected = new HashSet<Integer>();
View Full Code Here

   *
   * @deprecated Use DBIDs, not integers!
   */
  @Deprecated
  public Bicluster(int[] rowIDs, int[] colIDs, Relation<V> database) {
    ArrayModifiableDBIDs ids = DBIDUtil.newArray(rowIDs.length);
    for (int rowid : rowIDs) {
      ids.add(DBIDUtil.importInteger(rowid));
    }
    this.rowIDs = ids;
    this.colIDs = colIDs;
    this.database = database;
  }
View Full Code Here

   * @param m the number of medoids to be returned
   * @param random random number generator
   * @return a piercing set of m medoids from the specified sample set
   */
  private ModifiableDBIDs greedy(DistanceQuery<V, DoubleDistance> distFunc, DBIDs sampleSet, int m, Random random) {
    ArrayModifiableDBIDs s = DBIDUtil.newArray(sampleSet);
    ModifiableDBIDs medoids = DBIDUtil.newHashSet();

    // m_1 is random point of S
    DBID m_i = s.remove(random.nextInt(s.size()));
    medoids.add(m_i);
    if(logger.isDebugging()) {
      logger.debugFiner("medoids " + medoids);
    }

    // compute distances between each point in S and m_i
    Map<DBID, DistanceResultPair<DoubleDistance>> distances = new HashMap<DBID, DistanceResultPair<DoubleDistance>>();
    for(DBID id : s) {
      DoubleDistance dist = distFunc.distance(id, m_i);
      distances.put(id, new GenericDistanceResultPair<DoubleDistance>(dist, id));
    }

    for(int i = 1; i < m; i++) {
      // choose medoid m_i to be far from prevois medoids
      List<DistanceResultPair<DoubleDistance>> d = new ArrayList<DistanceResultPair<DoubleDistance>>(distances.values());
      Collections.sort(d);

      m_i = d.get(d.size() - 1).getDBID();
      medoids.add(m_i);
      s.remove(m_i);
      distances.remove(m_i);

      // compute distances of each point to closest medoid
      for(DBID id : s) {
        DoubleDistance dist_new = distFunc.distance(id, m_i);
View Full Code Here

   * @param k the number of samples to be returned
   * @param random random number generator
   * @return a set of k elements from the specified sample set
   */
  private ModifiableDBIDs initialSet(DBIDs sampleSet, int k, Random random) {
    ArrayModifiableDBIDs s = DBIDUtil.newArray(sampleSet);
    ModifiableDBIDs initialSet = DBIDUtil.newHashSet();
    while(initialSet.size() < k) {
      DBID next = s.remove(random.nextInt(s.size()));
      initialSet.add(next);
    }
    return initialSet;
  }
View Full Code Here

   * @param m_bad the bad medoids
   * @param random random number generator
   * @return m_current, the set of medoids in current iteration
   */
  private ModifiableDBIDs computeM_current(DBIDs m, DBIDs m_best, DBIDs m_bad, Random random) {
    ArrayModifiableDBIDs m_list = DBIDUtil.newArray(m);
    for(DBID m_i : m_best) {
      m_list.remove(m_i);
    }

    ModifiableDBIDs m_current = DBIDUtil.newHashSet();
    for(DBID m_i : m_best) {
      if(m_bad.contains(m_i)) {
        int currentSize = m_current.size();
        while(m_current.size() == currentSize) {
          DBID next = m_list.remove(random.nextInt(m_list.size()));
          m_current.add(next);
        }
      }
      else {
        m_current.add(m_i);
View Full Code Here

    return scores.getDBIDs();
  }

  @Override
  public IterableIterator<DBID> iter(DBIDs ids) {
    ArrayModifiableDBIDs sorted = DBIDUtil.newArray(ids);
    Collections.sort(sorted, new ImpliedComparator());
    return new IterableIteratorAdapter<DBID>(sorted);
  }
View Full Code Here

      // TODO: use bulk?
      WritableDataStore<DBIDs> s = DataStoreUtil.makeStorage(relation.getDBIDs(), DataStoreFactory.HINT_HOT | DataStoreFactory.HINT_STATIC, DBIDs.class);
      for(DBID id : relation.iterDBIDs()) {
        List<DistanceResultPair<D>> neighbors = knnQuery.getKNNForDBID(id, k);
        ArrayModifiableDBIDs neighbours = DBIDUtil.newArray(neighbors.size());
        for(DistanceResultPair<D> dpair : neighbors) {
          neighbours.add(dpair.getDBID());
        }
        s.put(id, neighbours);
      }
      return new PrecomputedKNearestNeighborNeighborhood<D>(s);
    }
View Full Code Here

        }
        InputStream in = new FileInputStream(file);
        in = FileUtil.tryGzipInput(in);
        BufferedReader br = new BufferedReader(new InputStreamReader(in));
        for(String line; (line = br.readLine()) != null;) {
          ArrayModifiableDBIDs neighbours = DBIDUtil.newArray();
          String[] entries = line.split(" ");
          DBID id = lblmap.get(entries[0]);
          if(id != null) {
            for(int i = 0; i < entries.length; i++) {
              final DBID neigh = lblmap.get(entries[i]);
              if(neigh != null) {
                neighbours.add(neigh);
              }
              else {
                if(logger.isDebugging()) {
                  logger.debug("No object found for label " + entries[i]);
                }
View Full Code Here

TOP

Related Classes of de.lmu.ifi.dbs.elki.database.ids.ArrayModifiableDBIDs

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.