Package de.lmu.ifi.dbs.elki.data

Examples of de.lmu.ifi.dbs.elki.data.DoubleVector$Parameterizer


    // also test partial queries, forward only
    testKNNQueries(rep, lin_knn_query, preproc_knn_query, k / 2);

    // insert new objects
    List<DoubleVector> insertions = new ArrayList<DoubleVector>();
    DoubleVector o = DatabaseUtil.assumeVectorField(rep).getFactory();
    Random random = new Random(seed);
    for(int i = 0; i < updatesize; i++) {
      DoubleVector obj = VectorUtil.randomVector(o, random);
      insertions.add(obj);
    }
    System.out.println("Insert " + insertions);
    System.out.println();
    DBIDs deletions = db.insert(MultipleObjectsBundle.makeSimple(rep.getDataTypeInformation(), insertions));
View Full Code Here


    // verify data set size.
    assertTrue(rep.size() == shoulds);

    {
      // get the 10 next neighbors
      DoubleVector dv = new DoubleVector(querypoint);
      KNNQuery<DoubleVector, DoubleDistance> knnq = db.getKNNQuery(dist, k);
      assertTrue("Returned knn query is not of expected class.", expectKNNQuery.isAssignableFrom(knnq.getClass()));
      KNNResult<DoubleDistance> ids = knnq.getKNNForObject(dv, k);
      assertEquals("Result size does not match expectation!", shouldd.length, ids.size());

      // verify that the neighbors match.
      int i = 0;
      for(DistanceResultPair<DoubleDistance> res : ids) {
        // Verify distance
        assertEquals("Expected distance doesn't match.", shouldd[i], res.getDistance().doubleValue());
        // verify vector
        DBID id = res.getDBID();
        DoubleVector c = rep.get(id);
        DoubleVector c2 = new DoubleVector(shouldc[i]);
        assertEquals("Expected vector doesn't match: " + c.toString(), 0.0, dist.distance(c, c2).doubleValue(), 0.00001);

        i++;
      }
    }
    {
      // Do a range query
      DoubleVector dv = new DoubleVector(querypoint);
      RangeQuery<DoubleVector, DoubleDistance> rangeq = db.getRangeQuery(dist, eps);
      assertTrue("Returned range query is not of expected class.", expectRangeQuery.isAssignableFrom(rangeq.getClass()));
      List<DistanceResultPair<DoubleDistance>> ids = rangeq.getRangeForObject(dv, eps);
      assertEquals("Result size does not match expectation!", shouldd.length, ids.size());

      // verify that the neighbors match.
      int i = 0;
      for(DistanceResultPair<DoubleDistance> res : ids) {
        // Verify distance
        assertEquals("Expected distance doesn't match.", shouldd[i], res.getDistance().doubleValue());
        // verify vector
        DBID id = res.getDBID();
        DoubleVector c = rep.get(id);
        DoubleVector c2 = new DoubleVector(shouldc[i]);
        assertEquals("Expected vector doesn't match: " + c.toString(), 0.0, dist.distance(c, c2).doubleValue(), 0.00001);

        i++;
      }
    }
View Full Code Here

    // verify data set size.
    assertTrue(rep.size() == shoulds);

    {
      // get the 10 next neighbors
      DoubleVector dv = new DoubleVector(querypoint);
      KNNQuery<DoubleVector, DoubleDistance> knnq = db.getKNNQuery(dist, k);
      assertTrue("Returned knn query is not of expected class.", expectKNNQuery.isAssignableFrom(knnq.getClass()));
      List<DistanceResultPair<DoubleDistance>> ids = knnq.getKNNForObject(dv, k);
      assertEquals("Result size does not match expectation!", shouldd.length, ids.size());

      // verify that the neighbors match.
      int i = 0;
      for(DistanceResultPair<DoubleDistance> res : ids) {
        // Verify distance
        assertEquals("Expected distance doesn't match.", shouldd[i], res.getDistance().doubleValue());
        // verify vector
        DBID id = res.getDBID();
        DoubleVector c = rep.get(id);
        DoubleVector c2 = new DoubleVector(shouldc[i]);
        assertEquals("Expected vector doesn't match: " + c.toString(), 0.0, dist.distance(c, c2).doubleValue(), 0.00001);

        i++;
      }
    }
    {
      // Do a range query
      DoubleVector dv = new DoubleVector(querypoint);
      RangeQuery<DoubleVector, DoubleDistance> rangeq = db.getRangeQuery(dist, eps);
      assertTrue("Returned range query is not of expected class.", expectRangeQuery.isAssignableFrom(rangeq.getClass()));
      List<DistanceResultPair<DoubleDistance>> ids = rangeq.getRangeForObject(dv, eps);
      assertEquals("Result size does not match expectation!", shouldd.length, ids.size());

      // verify that the neighbors match.
      int i = 0;
      for(DistanceResultPair<DoubleDistance> res : ids) {
        // Verify distance
        assertEquals("Expected distance doesn't match.", shouldd[i], res.getDistance().doubleValue());
        // verify vector
        DBID id = res.getDBID();
        DoubleVector c = rep.get(id);
        DoubleVector c2 = new DoubleVector(shouldc[i]);
        assertEquals("Expected vector doesn't match: " + c.toString(), 0.0, dist.distance(c, c2).doubleValue(), 0.00001);

        i++;
      }
    }
View Full Code Here

            throw new AbortException("Expected word token, got: " + tokenizer.toString());
          }
          cur[k] = tokenizer.nval;
          nextToken(tokenizer);
        }
        data[out] = new DoubleVector(cur);
      }
      else if(etyp[out] == TypeUtil.LABELLIST) {
        // Build a label list out of successive labels
        LabelList ll = new LabelList(dimsize[out]);
        for(int k = 0; k < dimsize[out]; k++) {
View Full Code Here

        // Collect labels:
        for(int i = 0; i < dimsize[out]; i++) {
          labels[i] = names.get(out + i);
        }
        if(!sparse) {
          VectorFieldTypeInformation<DoubleVector> type = new VectorFieldTypeInformation<DoubleVector>(DoubleVector.class, DoubleVector.STATIC, dimsize[out], labels, new DoubleVector(new double[dimsize[out]]));
          bundle.appendColumn(type, new ArrayList<DoubleVector>());
        }
        else {
          VectorFieldTypeInformation<SparseFloatVector> type = new VectorFieldTypeInformation<SparseFloatVector>(SparseFloatVector.class, dimsize[out], labels, new SparseFloatVector(SparseFloatVector.EMPTYMAP, dimsize[out]));
          bundle.appendColumn(type, new ArrayList<SparseFloatVector>());
View Full Code Here

    derivator = parameters.tryInstantiate(cls);

    CorrelationAnalysisSolution<DoubleVector> model = derivator.run(derivatorDB);

    Matrix weightMatrix = model.getSimilarityMatrix();
    DoubleVector centroid = new DoubleVector(model.getCentroid());
    DistanceQuery<DoubleVector, DoubleDistance> df = QueryUtil.getDistanceQuery(derivatorDB, new WeightedDistanceFunction(weightMatrix));
    DoubleDistance eps = df.getDistanceFactory().parseString("0.25");

    ids.addDBIDs(interval.getIDs());
    // Search for nearby vectors in original database
    for(DBID id : relation.iterDBIDs()) {
      DoubleVector v = new DoubleVector(relation.get(id).getColumnVector().getArrayRef());
      DoubleDistance d = df.distance(v, centroid);
      if(d.compareTo(eps) < 0) {
        ids.add(id);
      }
    }
View Full Code Here

   */
  private Database buildDerivatorDB(Relation<ParameterizationFunction> relation, CASHInterval interval) throws UnableToComplyException {
    DBIDs ids = interval.getIDs();
    ProxyDatabase proxy = new ProxyDatabase(ids);
    int dim = relation.get(ids.iterator().next()).getDimensionality();
    SimpleTypeInformation<DoubleVector> type = new VectorFieldTypeInformation<DoubleVector>(DoubleVector.class, dim, new DoubleVector(new double[dim]));
    MaterializedRelation<DoubleVector> prep = new MaterializedRelation<DoubleVector>(proxy, type, ids);
    proxy.addRelation(prep);

    // Project
    for(DBID id : ids) {
      DoubleVector v = new DoubleVector(relation.get(id).getColumnVector().getArrayRef());
      prep.set(id, v);
    }

    if(logger.isDebugging()) {
      logger.debugFine("db fuer derivator : " + prep.size());
View Full Code Here

   *         possible
   */
  private Database buildDerivatorDB(Relation<ParameterizationFunction> relation, DBIDs ids) throws UnableToComplyException {
    ProxyDatabase proxy = new ProxyDatabase(ids);
    int dim = relation.get(ids.iterator().next()).getDimensionality();
    SimpleTypeInformation<DoubleVector> type = new VectorFieldTypeInformation<DoubleVector>(DoubleVector.class, dim, new DoubleVector(new double[dim]));
    MaterializedRelation<DoubleVector> prep = new MaterializedRelation<DoubleVector>(proxy, type, ids);
    proxy.addRelation(prep);

    // Project
    for(DBID id : ids) {
      DoubleVector v = new DoubleVector(relation.get(id).getColumnVector().getArrayRef());
      prep.set(id, v);
    }

    return proxy;
  }
View Full Code Here

TOP

Related Classes of de.lmu.ifi.dbs.elki.data.DoubleVector$Parameterizer

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.