Package de.lmu.ifi.dbs.elki.algorithm.clustering.trivial

Examples of de.lmu.ifi.dbs.elki.algorithm.clustering.trivial.ByLabelClustering


    if(logger.isVerbose()) {
      logger.verbose("Preprocessing clusters...");
    }
    // Cluster by labels
    Collection<Cluster<Model>> split = (new ByLabelClustering()).run(database).getAllClusters();

    // Compute cluster averages and covariance matrix
    HashMap<Cluster<?>, V> averages = new HashMap<Cluster<?>, V>(split.size());
    HashMap<Cluster<?>, Matrix> covmats = new HashMap<Cluster<?>, Matrix>(split.size());
    for(Cluster<?> clus : split) {
View Full Code Here


    // run all-in-noise
    TrivialAllNoise allinnoise = new TrivialAllNoise();
    Clustering<Model> ran = allinnoise.run(db);

    // run by-label
    ByLabelClustering bylabel = new ByLabelClustering();
    Clustering<?> rbl = bylabel.run(db);

    assertEquals(1.0, PairCountingFMeasure.compareClusterings(rai, rai), Double.MIN_VALUE);
    assertEquals(1.0, PairCountingFMeasure.compareClusterings(ran, ran), Double.MIN_VALUE);
    assertEquals(1.0, PairCountingFMeasure.compareClusterings(rbl, rbl), Double.MIN_VALUE);
View Full Code Here

TOP

Related Classes of de.lmu.ifi.dbs.elki.algorithm.clustering.trivial.ByLabelClustering

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.